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Abstract

Experiments that probe epithelial tissue dynamics, cell competition, and tumour growth are fun-
damental to understand processes in developmental biology, cancer progression and cancer
treatment. However, interpreting complex biological experiments is challenging. To resolve this
challenge we develop and use a range of different types of mathematical models. In the first
part of this thesis, we develop a mathematical framework for describing epithelial tissues that
incorporates cell motion due to mechanical interactions, cell proliferation, cell death, epithelial-
mesenchymal transitions via cell detachment at the tissue boundary, and mechanochemical
coupling, all for heterogeneous cell populations. Our approach is to start with biologically-
motivated discrete models and derive the corresponding continuum models, for both fixed and
free boundary conditions. Applications to experimental studies are proposed and discussed.
In the second part of this thesis, we collect novel experimental data from tumour spheroid ex-
periments that we perform over a range of experimental designs. Importantly, we use real-time
cell cycle imaging to reveal proliferation-inhibited and necrotic regions inside growing tumour
spheroids. We then revisit the seminal Greenspan model describing tumour growth and use
statistical analysis to reveal the experimental design choices that are important and lead to
reliable biological insight. In doing so we connect Greenspan’s model to data for the first time
since its publication in 1972. All key code is freely available on [GitHub] repositories.


https://github.com/ryanmurphy42
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CHAPTER 1. INTRODUCTION 2

1.1 Overview

Mechanochemical processes, whereby mechanical and chemical processes are coupled, are
of great interest in experimental biology with applications to epithelial tissue dynamics and
cancer tumour growth [28}[79}[91}[98][T71][228]. Improved understanding of these fundamen-
tal biological processes in development and disease will help combat diseases such as can-
cer [01]. Epithelial tissues are widespread throughout the body and cover all body surfaces,
line body cavities and hollow organs (Figure [T.1p-c), and experiments highlight the
importance of mechanochemical processes in morphogenesis, homeostasis and maintaining
tissue function [28}[98][171]. Meanwhile tumour spheroid experiments, performed since the
1970s, are routinely used to understand cancer progression and to test and develop cancer

treatments [46}[71}[99}[1T9}[150}[169}[197}[215][217][245] (Figure [T.1d-f). However, interpreting

experimental data from these studies is challenging without a suitable framework.

Epithelial tissue dynamics

(@) X position, pm (b)
0 200 400 600 800 1000 1200
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Tumour spheroid experiments
(d) Phase (i) - 2D slice + FUCCI (e) Phase (ii) - 2D slice + FUCCI (f) Phase (iii) - 2D slice + FUCCI

time

Figure 1.1: Experimental images from epithelial tissue and tumour spheroid experiments. (a) Cell
migration and tracking in an epithelial monolayer experiment wounded by scratching (Figure 4 from [171]
reproduced with permission). (b) Epithelial cell migration and invasion in an in vitro experiment (Figure 1
from [T98] reproduced with permission). (c) Mouse uterine endometrial epithelium (Figure 1 from [T07]
reproduced with permission). (d)-(f) Tumour spheroid growth experiments (Figure 1 from Chapter 6).
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Mathematical modelling provides a powerful framework to interpret experimental data and
to pose, form, and test hypotheses. Thereby, reducing experimental effort, both in time and ex-
pense. In the following we focus first on building a mechanochemical model for epithelial tissue
dynamics. Second, we explore mathematical models for cancer tumour spheroid growth, dis-
cuss current tumour spheroid experimental protocols, and how statistical analysis in combina-
tion with mathematical modelling may provide great insights. By studying both epithelial tissue
dynamics and tumour spheroid experiments, we develop understanding of mechanochemi-
cal and experimental models in mathematical biology from two approaches: (i) those where
model development is required to catch-up to the latest experiments; and (ii) those where
many mathematical models have already been posed to study experiments but few have been
experimentally tested. Specifically, case (i) refers primarily to epithelial tissue dynamics and

case (ii) to tumour spheroid experiments.

To study epithelial tissues at the cell and tissue scale two mathematical modelling ap-
proaches naturally arise: (i) a discrete model, often referred to as an individual based model,
reviewed in [T75][779] and including cellular automata models, cellular Potts models, cell-centre
models [179], vertex models, subcellular-element models [196], and tensegrity models [104];
(i) a continuum model, for example derived using the theory of continuum mechanics [78]. Both
modelling approaches are widely used and have their own advantages and disadvantages.
Discrete models explicitly describe cellular-level interactions but often lack macroscopic intu-
ition. Continuum models on the other hand often provide no cellular-level information but
can be more adept at including concepts of macroscopic stiffness and, for large num-
bers of cells, as in epithelial tissues, tend to be less computationally expensive. Hybrid inter-
mediate models also exist which consider the multi-scale nature of the problem [13][176}[236].
One approach to get the best of both worlds is to develop a mathematical modelling framework
that allows a modeller to switch between both modelling approaches with an in-depth under-
standing of when this is appropriate and advantageous. Current approaches to implement
such a framework use a variety of coarse-graining techniques and assumptions, including the
use of slowly varying and periodic assumptions on the heterogeneity in the model [68}[174],
correlation functions [147[153], and interaction forces from potentials [27]. For epithelial tis-
sue dynamics, key features that should be included in a mathematical modelling framework
are cell-cell interaction forces, cell proliferation, cell death, fixed and free boundaries, and

mechanochemical processes [28][198].

At the tissue scale a natural starting point is to use a reaction-diffusion continuum model.

Reaction-diffusion models are widely used in mathematical biology for a wide range of ap-
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plications 161,[T62]. In one spatial dimension, these models typically take the form

of

89’;?” :a% (D(q<x,t>)aquﬂ) +R(q(z.1)), (1.1.1)

where ¢(z,t) is a density, for example of cells; x represents spatial position; ¢ represents
time; the diffusivity is commonly assumed to be a constant, D(q(z,t)) = D, which describes
a population of cells each of which moves randomly [140}[T41]; and, the reaction term can
take many forms such as a logistic growth term. Many analytical and computational tools
have been developed to study reaction-diffusion type problems. However, it is not immedi-
ately clear whether reaction-diffusion models can or should be used to study cells that, rather
than moving randomly, move due to mechanical interactions. Two key approaches have been
used to demonstrate that cell movement driven by mechanical interactions can be studied with
reaction-diffusion equations. The first approach, and the approach taken in this thesis, is very
fruitful, namely prescribing a discrete cell-based model, carefully deriving the corresponding
the continuum model, and comparing the prescribed discrete model and the derived contin-
uum model [T64}[T65]. The second approach, that which is commonly applied in continuum
mechanics, is to consider conservation of mass and momentum to determine the continuum
model and proceed only with the continuum model [78]. We show that this second approach

may lead to incorrect results.

At the cell scale, key starting points for this thesis are the studies by Murray et al. [164}[165].
By considering an epithelial tissue comprising of a homogeneous population of cells, they first
describe a discrete model consisting of a chain of cells (Figure [T.2 where every cell has the
same cellular properties). Each cell is thought to act like a mechanical spring with cell stiffness,
k > 0, and resting cell length, a > 0. The motion of cells is assumed to occur in an overdamped
and viscous environment with mobility coefficient, > 0. Then the time-evolution of the position
of a cell boundary, z;(t), is given by (Figure [T-2),

dxi (t)

1 =Fi1,—F,;1, i=12,...,N. (1.1.2)

where F;, 1 ; represents the cell-cell interaction force experienced on the ™" cell boundary due
to cell i + 1 (Figure [1.2). Equations form a system of deterministic ordinary differ-
ential equations that are solved to obtain the full time-evolution for the positions of all cells
within the tissue. The corresponding continuum model takes the form of a reaction-diffusion
equation (1.1.1), with D(q(z, ¢)) determined by the cell-cell interaction force [T65], for example
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(a) Epithelial tissue dynamics for a heterogeneous cell population

k a
| |

x=0 b x=L

(b) Competing adjacent epithelial tissues

kl
x=0 a x = s(t) a, x=L
(c) Cell proliferation (d) Cell death

A T
B s e e e o o o S o e

(e) Free boundary epithelial tissue dynamics with cell detachment due to EMT

-0 L(t) X L(t + df)

(f) Impact of proliferation on size and chemical concentration

> B> oMo

|a |a| | 2a I
Chemical concentration: | | | | [N

Figure 1.2: Mathematical modelling of epithelial tissue dynamics (adapted from schematics from Chap-
ters 2, 3, 4, and 5). Cell-cell interactions are incorporated by considering each cell to act like a mechan-
ical spring. Cell heterogeneity is shown in blue in (a) for a slowly-varying-in-space heterogeneous
cell population, and in (b) for rapidly-varying-in-space heterogeneous cell population. (c) A new cell is
formed during cell proliferation. (d) A cell is lost during cell death. (e) During epithelial-mesenchymal
transitions cells undergo a phenotypic and morphological changes to detach, for example at the free
boundary of the tissue where chemical concentration may be highest. (f) Impact of cell proliferation on
cell size and chemical concentration.
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D (q(x,t)) = k/(nq(z,t)?) for Hooke’s linear force law, and with no reaction term when cell
proliferation is neglected. Interestingly, unlike many models studied in mathematical biology,
the diffusion term is nonlinear and is inversely proportional to the square of the cell density,
q(z,t). Murray et al’s work has also been adapted to intestinal crypts .

Murray et al’s [T64}[T65] model is applicable to homogeneous cell populations. While the
discrete model can be readily extended to heterogeneous cell populations (Figure [1.2g,b), it
is not clear what the corresponding continuum model is nor when it is valid. Furthermore, it
is not clear if the techniques used to derive the continuum model for homogeneous popula-
tions can be applied when considering a heterogeneous population of cells. Other discrete to
continuum models have also been studied, for example with energy considerations [68], corre-
lation functions [147}[153], and interaction forces from potentials [27]. However, these models
do not include mechanical stiffness, which is important in cancer progression [193], cancer

invasion and metastasis [T70], cancer detection [T0}[T03}[182][221], wound healing [61], and
morphogenesis [66].

Many mathematical modelling studies assume that epithelial tissues comprise of homo-
geneous populations [164][165]. However, in reality epithelial tissues are naturally heteroge-
neous [T82]. This heterogeneity can arise at multiple scales [38][248]. At the cellular scale
fundamental properties that can vary between cells include mechanical properties, such as
cell stiffness, equilibrium cell size, proliferation rate and death rate. Furthermore, heterogene-
ity in mechanical stiffness is an important biomarker in cancer detection [T0)[T03}[182)221]. This
cell-to-cell heterogeneity can be naturally incorporated into discrete models. However, Murray
et al.s [164][165] discrete and continuum model has not been extended to heterogeneous pop-
ulations. Fozard et al. [68] have introduced heterogeneity into their one-dimensional model,
derived using energy considerations, but invoke slowly-varying-in-space and periodic assump-
tions. Heterogeneity has also been incorporated in two-dimensional and three-dimensional
discrete models for epithelial monolayers, with prominent classes of models that explicitly in-
corporate cell-cell forces including cell-centre and vertex models [67,[175[179]. However the
corresponding continuum models are unclear with limited progress even for homogeneous
populations [74]. Any insights gained at lower dimensions will be valuable to develop under-
standing of higher dimensional models. Developing a discrete to continuum modelling frame-
work that incorporates slowly-vary-in-space and rapidly-vary-in-space heterogeneity for low
and high cell numbers is of interest (Figure [T.2p,b), with applications to epithelial monolayers,
intestinal crypts, and tissue engineering [43]. Furthermore, introducing heterogeneity into an

epithelial tissue model would open up a new realm of possibilities.
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One such example where including heterogeneous populations is important is in cell com-
petition [T30]. Cell competition is the mechanism responsible for the elimination of viable sub-
optimal loser cells by optimal winner cells [29]. Cell competition can act as a quality control
mechanism in tissue development or as a defence against precancerous cells, and harnessing
cell competition has been suggested as a possible approach to enhance both cell-based can-
cer and regenerative therapies [184]. Many experimental studies have identified different genes
and signalling pathways as potential mechanisms underlying cell competition [29]. Further-
more, early studies of cell competition suggested that cell competition and long-term population
outcomes arise due to differences in intrinsic cell proliferation and cell death rates [210}[217].
Many mathematical models study the time-evolution of competing populations using ordinary
differential equations [56}[161}[T162,[172], but these models neglect spatial effects. Partial dif-
ferential equation models incorporate spatiotemporal dynamics, and typically take the form of
a system of reaction-diffusion equations (1.1.1) [56}[161][162]. In these frameworks, the role of

mechanical interactions and mechanical properties is often overlooked.

Recent experiments have demonstrated that mechanical interactions can play an important
role in cell competition, leading research of mechanical cell competition
241]. In the emerging research area of mechanical cell competition, winner cells compress
neighbouring cells promoting tissue crowding and regions of higher density, which leads to
cell death (Figure [1.2d) [29}[T29)[241], while cell proliferation occurs in regions of lower density
(Figure[1.2k) [82]. However, a theoretical framework to study these processes which connects
cell and tissue scales is unavailable at present [T30]. Such a framework would be beneficial
to form and test hypotheses on how cellular mechanisms and competition mechanisms impact

the long-term survival of competing populations [130].

One source of experimental data for epithelial tissue dynamics is in vitro experiments, per-
haps from wound healing scratch and barrier removal assays (Figure[T.Tj) [@5][171}[183]. Such
wound healing assay experiments have previously been studied with travelling wave solutions
of the Fisher-KPP reaction-diffusion model, described by equation with constant diffu-
sivity and logistic type reaction term [T40}[T41]. Travelling wave solutions can provide analytical
expressions for the shape of wavefronts and the wavespeed, the speed at which the front of
the wave invades into free space. However, these solutions may not have a well-defined front,
which means that it is not clear where the front of the wave is defined. For example, solutions

of the Fisher-KPP equation on —co < 2 < oo do not have compact support because the cell
density, ¢(z,t), is always positive, with ¢(z,t) — 0 as « — oo [58}[T40}[T41][161].

A well-defined front is observed in experiments. Therefore other studies have developed
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models to capture this feature, for example by reformulating the Porous-Fisher equation to
include a moving boundary [194][195][200] [247] or by adapting the Fisher-KPP equation to
a Fisher-Stefan model so that ¢(z,t) = 0 at x = L(t), where L(t) is the domain length
[571[B8}[623 [63]. However, a physical meaning for the Stefan condition is not clear and in gen-

eral travelling wave solutions for reaction-diffusion models often overlook the important role of

mechanics [T98]. Since nonlinear reaction-diffusion equations describing homogeneous pop-
ulations often support travelling wave solutions [161][201], a natural question to ask is whether
the free boundary version of Murray et als work [164}[T65], proposed by Baker et al. [19], has
a travelling wave solution. We might anticipate that a travelling wave solution does indeed exist
and that a well-defined front may naturally arise from clearly motivated biological assumptions.

Furthermore, it would be interesting to see how mechanical properties of cells influence the
wavespeed [198].

Thus far we have primarily discussed the role of mechanical interactions in epithelial tissue
dynamics. However, chemical processes are at least equally as important and often strongly
coupled with mechanical processes [28][91][98][171}[228]. Recent progress has been fast.
Just under a decade ago experiments showed mechanical waves in freely expanding epithelial
tissue [198]. They interpreted these results using a discrete model similar to that of Murray
et al. [164}[165]. Last year, similar experiments were performed with improved technology
and direct connections were made between the mechanical waves and ERK chemical waves,
strongly suggesting a mechanochemical feedback loop [28][98]. The latest results were mod-
elled using a modified version of Murray et al.s continuum model. However, these models tend
to neglect cell proliferation and cell death, which may play an important role in experimental
results and longer term studies [28][198]. Furthermore, they do not they do not utilise the

advantages of both discrete and continuum modelling approaches.

Mechanochemical coupling has also recently been explored mathematically in relation to
epithelial tissue dynamics with intracellular signalling incorporated into each cell of Murray et
al’s work [164][T65]. This work by Tambyah et al. [225], motivated by the work in this thesis and
the work of Zmurchok et al. [256], nicely demonstrates how perturbations to mechanochemical
coupling at the cellular scale give rise to different tissue level behaviour. This is shown for Rac-
Rho pathway and for activator-inhibitor systems giving rise to Turing-like patterns in moving
boundary problems [48}[49[225]. Given that mechanochemical processes have been shown
to be important for behaviour within the tissue, we ask what the role of mechanochemical

processes is at the leading edge of the tissue which is largely unexplored.

Cells in epithelial tissues are characterised as moving collectively and being closely ad-
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herent. These epithelial cells can undergo phenotypic and morphological changes to partially
or fully transition to mesenchymal cells, typically characterised as cells that are less adherent
to other cells and tend to move as individuals, in a process called epithelial-mesenchymal
transitions (EMT) [110][249]. Epithelial-mesenchymal transitions are key events in embry-
onic development; wound healing; and cancer development [124] [229][249]. These transi-
tions have been studied extensively for decades experimentally and more recently with math-
ematical models from the perspective of intracellular chemical processes and regulatory net-

works [4TJ@T][ITO}[TT1][T37)[226][229]. However, even though experimental evidence exists that

demonstrates that physical signals, such as mechanical stress [77], can play a role in EMT,

the role of mechanics in EMT is largely unexplored. Notable exceptions being discrete mod-
els that explore how cell adhesion is influenced by intracellular chemical processes leading to
predictions of temporal cell-cell detachments [12,[T87]. However, there is no current discrete-
to-continuum mathematical modelling framework to explore such processes and the long-term
behaviour of epithelial tissues [T10]. In Figure [T.2e-f we present schematics for a free bound-
ary model of epithelial tissue dynamics where diffusion of an epithelial-mesenchymal transition

inducing chemical results in cell detachment at the tissue boundary.

Many of the key features discussed for epithelial monolayers also occur in three-dimensional
cancer tumours, such as mechanical interactions, cell proliferation, cell death, mechanochem-

ical processes, heterogeniety, and epithelial-mesenchymal transitions [46}[71}[79}[99][119}[150]
[(69}[197][215][217][245]. However, in comparison to two-dimensional epithelial monolayers, tu-

mours are more appropriately studied experimentally and mathematically in three-dimensions,
since behaviour within the tumour is understood to be strongly spatially-dependent [79]. Un-

like mechanochemical processes in epithelial tissues, many mathematical models have been

developed to study avascular tumour growth [7}[T6)[17}[36}A0}[65}[79}B5}[T05},[T06}[T08,f 17}[122

[135}[148][149,[152|[242][243]. However, even though many mathematical models have been
developed few have been experimentally validated [16]. It is therefore of interest to connect

such mathematical models to experimental data.

Connecting mathematical models to experimental data is also beneficial to experimental
researchers. A recent powerful experimental tool is fluorescent ubiquitination-based cell cy-
cle indicator (FUCCI) technology [87}[192][251]. FUCCI technology enables real-time imaging
of the cell cycle. These tools have been valuable in combination with mathematical mod-
elling [39[237}[238], for example in replicating normally-hidden inherent synchronisation in cell
proliferation [238]. These two-dimensional in vitro experimental studies have been connected

to mathematical modelling using different statistical methods, such as approximate Bayesian
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computation and statistical identifiability analysis [204]. Statistical identifiability analysis
is also been useful to explore heterogeneous media [205], model misspecification [206], and
tissue growth in 3D printed scaffolds [32].

Tumour spheroid experiments have been routinely used to study avascular tumour growth

and to test and develop drug treatments since the 1970s [46][71][79}[99 [119][150] [169}[197]

[215[217,[245]. However, experimental design is inconsistent and there is no consensus on

the optimal experimental design [46][71}[99] [TT19}[150][169}[197][215}[217][245]. These biologi-

cal experiments are inconsistent in: (i) the times when measurements are taken; (ii) the du-

ration of experiments, which from a few days to over a month [121][168[177]; (iii)
the initial number of cells used to form spheroids 121][168][177], for exam-
ple 300 to 20,000 cells [54}[168]; and (iv) the type of experimental measurements that are

taken [8}[18][54}[83][88}[121][T68}[177]. Furthermore, it is challenging to interpret and compare

experimental data and results across experimental designs. Therefore, it is of interest to in-

vestigate and potentially identify which experimental designs lead to reliable biological insight.
Mathematical modelling and statistical analysis could provide an insightful approach to quan-
titatively compare experimental designs and in doing so test mathematical models of tumour

growth with experimental data.

Given that there are many mathematical models of tumour growth with few experimentally
validated [[T€], it seems most sensible at this time to use an existing mathematical model rather
than develop a new mathematical model. Furthermore, at this stage choosing a mathemati-
cal model with few parameters, that have a relatively straightforward biological interpretation,
should gain mechanistic insight and avoid overfitting to experimental data. Therefore, we now
discuss the seminal Greenspan model [79]. The Greenspan model was published in 1972
and has been highly influential since it was the first mathematical model to describe the three
phases of avascular tumour spheroid growth: (i) all cells throughout the spheroid proliferate
(Figure[1.3p), (ii) cells close to the periphery proliferate while cells at the centre of the spheroid
are arrested an unable to proliferate (Figure [T.3p); (iii) cells close to periphery proliferate while
an intermediate region of cells are arrested and a central region is composed of dead cells in

various stages of dissolution (Figure[T.3k). These mechanisms are understood to be the result
of nutrient availability (Figure [1.3f-h).

Greenspan’s mathematical model is a mechanochemical model describing avascular tu-
mour growth, and distinct to the mechanochemical models previously discussed for epithelial
tissue dynamics. In Greenspan’s model mechanical interactions are assumed to maintain the

tumour as a compact solid mass, rather than being explored explicitly as in the models of Mur-
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Figure 1.3: Avascular tumour spheroid growth and the Greenspan mathematical model (adapted from
Figure 1 of Chapter 6). Tumour spheroids experience three phases of growth. (a)-(c) Confocal mi-
croscopy reveals different phases of tumour growth, including (a)-(b) 2D equatorial plane images of
WM793b human melanoma tumour spheroids on days 7, and 14 after seeding, and (c) 3D view of half
of a WM793b human melanoma tumour spheroid on day 21 after seeding. Confocal microscopy of flu-
orescent ubiquitination-based cell cycle indicator (FUCCI) transduced cells allow visualisation of each
cells stage in the cell cycle. (d) Cell cycle schematic coloured with respect to FUCCI signal. (e) To
perform the tumour spheroid experiments to collect the experimental data for this chapter | was trained,
starting from no experience in a laboratory prior to this PhD. | performed tumour spheroid experiments
from start to finish. Image shows me in the laboratory during the spheroid formation stage of an exper-
iment (further details are shown in Section 6.5.3 Experimental methods and the experimental protocol
is detailed in [218]). (f) Simulation of Greenspan’s mathematical model with Design 3, from Chapter
6, measuring the the outer (green), necrotic (black), and inhibited (magenta) radius. (g) Schematic for
Greenspan mathematical model. Nutrient diffuses within the tumour spheroid and is consumed by living
cells. (h) Snapshot of nutrient concentration, ¢(r,t) for 0 < r < R,(¢), for a tumour spheroid in phase
(iii) and where R, (t) is the tumours outer radius. External nutrient concentration is c. Inhibited radius,
R;(t), and necrotic radius, R, (t), are defined as the radius where the nutrient concentration first reaches
thresholds ¢; and ¢,, respectively.
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ray et al [164}[165] and those we will consider in Chapters Furthermore, as described
previously and in Figure chemical diffusion is important in Greenspan’s model to deter-
mine the time-evolution of the tumour internal structure, whereas in Chapter [5l we will explore
chemical diffusion in relation to epithelial-mesenchymal transitions. Greenspan’s model, due
to a spherical symmetry assumption, describes the evolution of the tumour size with equa-
tions with one-spatial dimension, namely the tumour radius. Note that models of Murray et
al. and those we will consider in Chapters [2}5] also have one spatial dimension. It is
of interest to experimentally test Greenspan’s seminal publication for the first time and explore
if we can use this model to improve tumour spheroid experimental protocols.

To experimentally test Greenspan’s seminal publication for the first time and explore if we
can use this model to improve tumour spheroid experimental protocols, we require experimen-
tal data. | collect this experimental data in the wet-laboratory (Figure [1.3). | started this PhD
with no laboratory experience and was trained to perform experiments in preparation for the fi-
nal results chapter of this thesis. Then for the final results chapter of this thesis | perform tumour
spheroid experiments from start to finish including: cell culturing; spheroid formation; spheroid
harvesting; spheroid fixing and mounting in preparation for imaging; confocal microscopy; and,
image acquisition, processing, and analysis. By designing and performing these experiments
myself | was able to collect the experimental data to interpret with mathematical modelling
and statistical analysis. Furthermore, the opportunity to perform wet-laboratory experiments

provided a wider appreciation of the questions explored in this thesis and for future work.
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1.2 Research questions

The work presented in this thesis is a combination of mathematical model development, new
experimental data, and statistical analysis. Following the discussion in the overview (Section

[1.1), we address the the following five questions:

Part 1: Mathematical model development

1. Can we extend existing mathematical models of cell movement due to mechanical inter-

actions in homogeneous epithelial tissues to heterogeneous cell populations?

2. Can we extend the model for cell movement due to mechanical interactions in heteroge-
neous epithelial tissues to incorporate cell proliferation and cell death, and what is impact

of the mechanical cell competition?

3. Do travelling wave solutions exist for mathematical models of free boundary epithelial

tissue dynamics and if so what are their properties?
4. What is the role of mechanical interactions on epithelial-mesenchymal transitions?
Part 2: Experimental desigh and mathematical modelling

5. Can we connect Greenspan’s mathematical model for avascular tumour spheroid growth
to experimental data, and in doing so can we improve the experimental design of fu-
ture experiments and demonstrate how to quantitatively compare data collected across

different experimental designs?
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1.3 Aims, objectives and outcomes

This thesis has two parts corresponding to two key aims. The first key aim is to develop a math-
ematical modelling framework to study epithelial tissue dynamics incorporating key biological
processes, such as cell movement due to mechanical interactions, mechanical relaxation, cell
proliferation, cell death, mechanical cell competition, mechanochemical coupling, and cell de-
tachment at tissue boundaries due to epithelial-mesenchymal transitions. This framework will
be applicable to heterogeneous populations on free and fixed domains, and where the discrete
model will be prescribed based on biological observations and the corresponding continuum-
limit model derived. The second key aim is to use mathematical models to quantitatively com-
pare experimental designs for tumour spheroid experiments to reveal those design choices that
are important and lead to reliable biological insight. To achieve these aims it is required that
we develop new mathematical models, perform tumour spheroid experiments, and use statis-
tical analysis. This thesis addresses the following five objectives that have a direct one-to-one
correspondence with the five research questions:

Part 1: Mathematical model development

1. Develop a discrete mathematical model to describe cell movement due to mechanical
interactions in heterogeneous epithelial tissues and derive and compare to the corre-

sponding continuum-limit model,

2. Extend objective 1 to develop a discrete mathematical model that includes cell prolifer-
ation and cell death in order to describe mechanical cell competition in heterogeneous

epithelial tissues and derive and compare to the corresponding continuum model,

3. Extend objectives 2 and 3 to examine the travelling wave behaviour of the free bound-
ary continuum model, incorporating cell movement due to mechanical interactions, cell

proliferation, and cell death,

4. Extend objectives 2, 3, and 4 to develop a discrete mathematical model to describe
the role of mechanical interactions in epithelial-mesenchymal transitions and derive and

compare to the corresponding continuum model,
Part 2: Experimental design and mathematical modelling

5. Perform tumour spheroid experiments in the laboratory and use statistical analysis with
the Greenspan model to identify experimental design choices that are important and lead
to reliable biological insight. Provide recommendations for future studies and demon-

strate how to quantitatively compare data collected across different experimental designs.
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This thesis is by publication, consisting of four published articles and one manuscript cur-
rently under consideration. The PhD candidate contributed significantly to all five manuscripts
as recognised by first authorship of all five manuscripts. The work presented in this thesis fulfils
the requirements for the award of a thesis by published papers at the Queensland University
of Technology. This thesis incorporates the publications listed, with abstracts, on the next five

pages.

1. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2019). A one-dimensional individual-
based mechanical model of cell movement in heterogeneous tissues and its coarse-

grained approximation. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences. 475:20180838. [doi:10.1098/rspa.2018.0838|biorxiv prepring

Abstract

Mechanical heterogeneity in biological tissues, in particular stiffness, can be used to dis-
tinguish between healthy and diseased states. However, it is often difficult to explore
relationships between cellular-level properties and tissue-level outcomes when biolog-
ical experiments are performed at a single scale only. To overcome this difficulty we
develop a multi-scale mathematical model which provides a clear framework to explore
these connections across biological scales. Starting with an individual-based mechani-
cal model of cell movement, we subsequently derive a novel coarse-grained system of
partial differential equations governing the evolution of the cell density due to heteroge-
neous cellular properties. We demonstrate that solutions of the individual-based model
converge to numerical solutions of the coarse-grained model, for both slowly-varying-in-
space and rapidly-varying-in-space cellular properties. We discuss applications of the
model, such as determining relative cellular-level properties and an interpretation of data

from a breast cancer detection experiment.


https://doi.org/10.1098/rspa.2018.0838
https://www.biorxiv.org/content/10.1101/485276v3
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2. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020). Mechanical cell competition in
heterogeneous epithelial tissues. Bulletin of Mathematical Biology. 82:130. [doi:10.1007

[s71538-020-00807-X][biorxiv preprin

Abstract

Mechanical cell competition is important during tissue development, cancer invasion,
and tissue ageing. Heterogeneity plays a key role in practical applications since cancer
cells can have different cell stiffness and different proliferation rates than normal cells.
To study this phenomenon, we propose a one-dimensional mechanical model of het-
erogeneous epithelial tissue dynamics that includes cell-length-dependent proliferation
and death mechanisms. Proliferation and death are incorporated into the discrete model
stochastically and arise as source/sink terms in the corresponding continuum model that
we derive. Using the new discrete model and continuum description, we explore several
applications including the evolution of homogeneous tissues experiencing proliferation
and death, and competition in a heterogeneous setting with a cancerous tissue compet-
ing for space with an adjacent normal tissue. This framework allows us to postulate new
mechanisms that explain the ability of cancer cells to outcompete healthy cells through
mechanical differences rather than an intrinsic proliferative advantage. We advise when
the continuum model is beneficial and demonstrate why naively adding source/sink terms
to a continuum model without considering the underlying discrete model may lead to in-

correct results.


https://doi.org/10.1007/s11538-020-00807-x
https://doi.org/10.1007/s11538-020-00807-x
https://www.biorxiv.org/content/10.1101/869495v2
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3. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2021). Travelling waves in a free
boundary mechanobiological model of an epithelial tissue. Applied Mathematics Letters.

111: 106636. [doi: 10.1016/].aml.2020.106636|[arxiv preprini

Abstract

We consider a free boundary model of epithelial cell migration with logistic growth and
nonlinear diffusion induced by mechanical interactions. Using numerical simulations,
phase plane and perturbation analysis, we find and analyse travelling wave solutions
with negative, zero, and positive wavespeeds. Unlike classical travelling wave solutions
of reaction-diffusion equations, the travelling wave solutions that we explore have a well-
defined front and are not associated with a heteroclinic orbit in the phase plane. We
find leading order expressions for both the wavespeed and the density at the free bound-
ary. Interestingly, whether the travelling wave solution invades or retreats depends only
on whether the carrying capacity density corresponds to cells being in compression or

extension.


https://doi.org/10.1016/j.aml.2020.106636
https://arxiv.org/pdf/2005.13925.pdf
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4. Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo H, Baker RE, Simpson

MJ (2021). The role of mechanical interactions in epithelial mesenchymal transitions.

Physical Biology. 18:046001. [doi:10.1088/1478-3975/abf425|[biorxiv preprini

Abstract

The detachment of cells from the boundary of an epithelial tissue and the subsequent
invasion of these cells into surrounding tissues is important for cancer development
and wound healing, and is strongly associated with the epithelial-mesenchymal transi-
tion (EMT). Chemical signals, such as TGF-3, produced by surrounding tissue can be
uptaken by cells and induce EMT. In this work, we present a novel cell-based discrete
mathematical model of mechanical cellular relaxation, cell proliferation, and cell detach-
ment driven by chemically-dependent EMT in an epithelial tissue. A continuum descrip-
tion of the model is then derived in the form of a novel nonlinear free boundary problem.
Using the discrete and continuum models we explore how the coupling of chemical trans-
port and mechanical interactions influences EMT, and postulate how this could be used

to help control EMT in pathological situations.


https://doi.org/10.1088/1478-3975/abf425
https://www.biorxiv.org/content/10.1101/2020.12.09.418434v3

CHAPTER 1. INTRODUCTION 19

5. Murphy RJ, Browning AP, Gunasingh G, Haass NK, Simpson MJ (2021). Designing

and interpreting 4D tumour spheroid experiments using mathematical models. Under

consideration at Nature Communications. [pioRxiv preprint]

Abstract

Tumour spheroid experiments are routinely used to study cancer progression and treat-
ment. However, experimental designs are inconsistent, leading to challenges in interpre-
tation and reproducibility. Using live-dead cell staining, and real-time cell cycle imaging,
we measure necrotic and proliferation-inhibited regions in many tumour spheroids using
various experimental designs that intentionally vary the initial spheroid size across multi-
ple cell lines, and involve making various measurements of the internal spheroid structure
using various temporal sampling frequencies. These data are difficult to compare and in-
terpret. However, using an objective mathematical modelling framework and statistical
identifiability analysis we quantitatively compare experimental designs and identify de-
sign choices that produce reliable biological insight. Measurements of internal spheroid
structure provide the most insight, whereas varying initial spheroid size and temporal
measurement frequency is less important. Our general framework applies to spheroids

grown in different conditions and with different cell types


https://doi.org/10.1101/2021.08.18.456910
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1.4 Structure of thesis

This thesis is presented as a thesis by published papers. Each of the main chapters (Chapters
2, 3, 4, 5, and 6) include the publications listed in Section [1.3] respectively. Each chapter in-
cludes a preamble, an abstract and an introduction describing the problem of interest, relevant
background and relevant literature. All chapters are independent publications so there is par-
tial overlap in these sections. Each chapter then includes mathematical model development
and discussion of new mathematical and/or experimental results. Chapters conclude with a
summary of the research findings and suggestions for future work. Chapters 2A, 3A, 4A, 5A,
and 6A present supplementary material for each of Chapters 2, 3, 4, 5, and 6, respectively.
Supplementary material includes additional results, such as additional details of derivations,
mathematical and experimental results. Numerical methods are also presented in supplemen-
tary material. The structure of this thesis is then as follows.

Chapter 1 is the introduction. This includes an overview of mechanochemical and experi-
mental models in mathematical biology focusing on the two parts of this thesis: (i) mathematical
model development for mechanochemical models, and (ii) experimental design and mathe-
matical modelling of tumour spheroid experiments. Research questions, aims, objectives and
outcomes, structure of the thesis, and statements of joint authorship are stated.

Chapter 2 includes Publication 1, addresses objective 1 and research question 1. The key
results include a new discrete model describing cell movement due to mechanical interactions
in heterogeneous epithelial tissues, a derivation to obtain the corresponding continuum model,
and the continuum model. Using these new models we examine under what conditions the
discrete and continuum model show good agreement, explore slowly-varying-in-space and
rapidly-varying-in-space epithelial tissues, and discuss applications including an interpretation
of data from a breast cancer detection experiment. Supplementary material, such as additional
results and numerical methods, associated with publication 1, is presented in Chapter 2A.

Chapter 3 includes Publication 2, addresses objective 2 and research question 2. This
chapter extends the work of Chapter 2, by incorporating cell proliferation and cell death into
the model of Chapter 1. The key results include a discrete model describing mechanical cell
competition in heterogeneous epithelial tissues, a derivation to obtain the corresponding the
continuum model, and the continuum model. Using these models we examine under what
conditions the discrete and continuum model show good agreement, explore the evolution of
homogeneous tissues and heterogeneous tissues with a cancerous cells competing for space
with healthy cells. We advise why naively adding source/sink terms to a continuum model

without considering the underlying discrete model may lead to incorrect results. Supplemen-
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tary material, such as additional results for homogeneous and heterogeneous populations and
numerical methods, associated with publication 2, is presented in Chapter 3A.

Chapter 4 includes Publication 3, addresses objective 3 and research question 3. This
chapter extends the work of Chapter 2 and 3, by considering a free boundary rather than a
fixed boundary and analysing the continuum model derived in earlier chapters. The key re-
sults include extending the continuum model to a free boundary and examining travelling wave
behaviour. Using this we show travelling wave solutions that may invade or retreat depending
on whether the carrying capacity density corresponds to cells being in compression or exten-
sion. Further, travelling wave solutions have well-defined fronts and are not associated with
heteroclinic orbits in the phase plane. Supplementary material, including additional results,
associated with publication 3, is presented in Chapter 4A.

Chapter 5 includes Publication 4, addresses objective 4 and research question 4. This
chapter extends the work of Chapter 2, 3, and 4, by incorporating diffusion of a chemical
that influences the rate at which cells detach from the tissue boundary, in a process called
epithelial-mesenchymal transition (EMT). In this new mechanochemical model, we focus on
exploring the role of mechanical interactions in epithelial-mesenchymal transitions (EMT). The
key results include a new discrete model describing the role of mechanical interactions in
epithelial-mesenchymal transitions, a derivation to obtain the corresponding the continuum
model, and the continuum model. Using this novel nonlinear free boundary problem we explore
how mechanochemical coupling influences epithelial-mesenchymal-transitions. Supplemen-
tary material, such as numerical methods and additional results, associated with publication 4,
is presented in Chapter 5A.

Chapter 6 transitions to Part 2 of this thesis, addresses objective 5 and research ques-
tion 5. This chapter uses Greenspan’s mathematical model which is a mechanochemical
model, but a different mathematical model to that derived in previous chapters. The key re-
sults include: performing tumour spheroid experiments with real-time cell cycle imaging where
| collect an abundance of experimental data across a range of experimental designs; verifica-
tion of the Greenspan’s mathematical model to that experimental data; and development of an
objective mathematical modelling framework with statistical identifiability analysis to quantita-
tively compare experimental designs and identify design choices that produce reliable biolog-
ical insight to provide recommendations for future studies. Supplementary material, such as
additional experimental images, experimental designs and numerical methods, is presented in
Chapter 6A.

Chapter 7 presents a summary of the research and suggestions for future research.



CHAPTER 1. INTRODUCTION 22

1.5 Statement of joint authorship

Here we outline the contributions of the Ph.D. candidate and the co-authors to each article.
All co—authors consent to the presentation of this material in this thesis. Each chapter also

includes a signed statement of contribution of co-authors for thesis by published paper.

Chapter 2: Mechanical relaxation in heterogeneous populations

The corresponding article is:
Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2019). A one-dimensional individual-based
mechanical model of cell movement in heterogeneous tissues and its coarse-grained approx-

imation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences. 475:20180838. [doi:10.1098/rspa.2018.0838|[biorxiv preprini|

Statement of joint authorship:

* Ryan J. Murphy (Candidate): Conceived and designed the study, derived the continuum
model, developed the codes for numerical simulation of the discrete and continuum mod-
els, performed numerical simulations, generated results, interpreted results, drafted the

manuscript, and revised the manuscript during the peer-review process.

» Pascal R. Buenzli: Conceived and designed the study and provided comments and gave

final approval for publication. Supervised the research.

» Ruth E. Baker: Conceived and designed the study and provided comments and gave

final approval for publication.

» Matthew J. Simpson: Conceived and designed the study and provided comments and
gave final approval for publication. Supervised the research. Acted as corresponding

author.


https://doi.org/10.1098/rspa.2018.0838
https://www.biorxiv.org/content/10.1101/485276v3
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Chapter 3: Mechanical cell competition

The corresponding article is:
Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020). Mechanical cell competition in het-
erogeneous epithelial tissues. Bulletin of Mathematical Biology. 82:130. [doi:10.7007/s11538]

[020-00807-X][biorxiv preprin

Statement of joint authorship:

* Ryan J. Murphy (Candidate): Conceived and designed the study, derived the contin-
uum model, developed the codes for numerical simulation of the discrete and continuum
models, performed numerical simulations, generated results, interpreted results, drafted
the manuscript, and revised the manuscript during the peer-review process. Acted as

corresponding author.

» Pascal R. Buenzli: Conceived and designed the study and provided comments and gave

final approval for publication. Supervised the research.

» Ruth E. Baker: Conceived and designed the study and provided comments and gave

final approval for publication.

» Matthew J. Simpson: Conceived and designed the study and provided comments and

gave final approval for publication. Supervised the research.


https://doi.org/10.1007/s11538-020-00807-x
https://doi.org/10.1007/s11538-020-00807-x
https://www.biorxiv.org/content/10.1101/869495v2
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Chapter 4: Travelling waves

The corresponding article is:

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2021). Travelling waves in a free boundary

mechanobiological model of an epithelial tissue. Applied Mathematics Letters. 111: 106636.

[doi: 70.1016/].aml.2020.106636][arxiv preprini]

Statement of joint authorship:

* Ryan J. Murphy (Candidate): Conceived and designed the study, derived the continuum
model, developed the codes for numerical simulation of the continuum models, performed
numerical simulations, generated results, interpreted results, drafted the manuscript, and

revised the manuscript during the peer-review process. Acted as corresponding author.

» Pascal R. Buenzli: Supervised the research, and provided comments and gave final

approval for publication.
* Ruth E. Baker: Provided comments and gave final approval for publication.

» Matthew J. Simpson: Supervised the research, and provided comments and gave final

approval for publication.


https://doi.org/10.1016/j.aml.2020.106636
https://arxiv.org/pdf/2005.13925.pdf
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Chapter 5: Mechanical interactions in epithelial-mesenchymal-transitions

The corresponding article is:
Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo H, Baker RE, Simpson MJ (2021).

The role of mechanical interactions in epithelial mesenchymal transitions. Physical Biology.

18:046001. [doi:70.1088/1478-3975/abf425|biorxiv preprin

Statement of joint authorship:

* Ryan J. Murphy (Candidate): Conceived and designed the study, derived the contin-
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2.0 Preamble

An article published in Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2019). A one-dimensional individual-based
mechanical model of cell movement in heterogeneous tissues and its coarse-grained approx-

imation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences. 475:20180838. [doi:10.1098/rspa.2018.0838] [bioRxiv preprint.

Selected for the [cover of July 2019 issue of the journall

This chapter includes Publication 1, addresses objective 1 and research question 1. The
key results include a new discrete model describing cell movement due to mechanical interac-
tions in heterogeneous epithelial tissues, a derivation to obtain the corresponding continuum
model, and the continuum model. Using these new models we examine under what conditions
the discrete and continuum model show good agreement, explore slowly-varying-in-space and
rapidly-varying-in-space epithelial tissues, and discuss applications including an interpretation
of data from a breast cancer detection experiment. Supplementary material, such as additional

results and numerical methods, associated with publication 1, is presented in Chapter 2A.


https://doi.org/10.1098/rspa.2018.0838
https://www.biorxiv.org/content/10.1101/485276v3
https://royalsocietypublishing.org/toc/rspa/2019/475/2227
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2.1 Abstract

Mechanical heterogeneity in biological tissues, in particular stiffness, can be used to distin-
guish between healthy and diseased states. However, it is often difficult to explore relation-
ships between cellular-level properties and tissue-level outcomes when biological experiments
are performed at a single scale only. To overcome this difficulty we develop a multi-scale
mathematical model which provides a clear framework to explore these connections across
biological scales. Starting with an individual-based mechanical model of cell movement, we
subsequently derive a novel coarse-grained system of partial differential equations governing
the evolution of the cell density due to heterogeneous cellular properties. We demonstrate that
solutions of the individual-based model converge to numerical solutions of the coarse-grained
model, for both slowly-varying-in-space and rapidly-varying-in-space cellular properties. We
discuss applications of the model, such as determining relative cellular-level properties and an

interpretation of data from a breast cancer detection experiment.
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2.2 Introduction

Biological tissues are heterogeneous and multi-scale by their very nature (Figure a)). This
heterogeneity exists at all scales from sub-cellular to cellular, and from cellular to tissue lev-
els [11}[72,[227]. We focus on cellular interactions driven by mechanical stiffness which is
of great importance in a variety of applications including epithelial tissue mechanics, cancer
progression , cancer invasion and metastasis , stiffness as a biomarker in cancer de-
tection [10][103][182[221], wound healing [6], and morphogenesis [66]. Tissue-level stiffness
information has been available for much longer than cellular-level stiffness data which
requires advanced technology, such as atomic force microscopy [52}[126H128]. However, dif-
ficulties arise in relating cellular-level data with tissue-level information when experiments are
conducted and analysed at a single scale only. Mathematical modelling with in silico simula-
tions provides a clear framework to explore these connections across biological scales.

Mathematical models of cell populations are broadly classified as either discrete or con-
tinuum. Discrete models, reviewed in [T75}[179], include cellular automata models, cellular
Potts models, cell-centre models [179], vertex models, subcellular-element models [196], and
tensegrity models [104]. Discrete models explicitly describe cellular-level interactions but often
lack macroscopic intuition. Continuum models on the other hand often provide no cellular-level
information but can be more adept at including concepts of macroscopic stiffness
and, for large numbers of cells, as in epithelial tissues, tend to be less computationally expen-
sive. Hybrid intermediate models also exist which consider the multi-scale nature of the prob-
lem [13}[176][236]. A range of models specifically examine the role of mechanics [186}[224].
However, in this work we focus on models which relate cellular-level details to tissue-level
outcomes. These models have been developed with a variety of coarse-graining techniques
and assumptions, including the use of slowly varying and periodic assumptions on the het-
erogeneity in the model [68][174], correlation functions [T47}[T53], and interaction forces from
potentials [27]. Few of these models explore the role of stiffness. The work of Murray et
al. [T64H167] explicitly incorporates cell stiffness; they derive a nonlinear diffusion equation
governing the evolution of the cell density in space and time, however the framework focuses
exclusively on homogeneous cell populations. Here, we extend this framework to heteroge-
neous cell populations.

The key focus of this work is to present a novel coarse-grained system of partial differential
equations governing the evolution of the cell density, cell stiffness and resting cell length, from
a heterogeneous cell-based model of epithelial tissue mechanics. The cell stiffness and resting

cell length are constant for each cell and are simply transported in space by cell movements.
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The motion in this model is governed by cell-cell interaction forces modelled with Hooke’s law.
In extending the work of Murray et al. [T64], we provide a more general derivation of the govern-
ing equations, see Section [2.3] which is robust to the inclusion of both slowly-varying-in-space
and rapidly-varying-in-space cellular properties, see Section We show that solutions from
the discrete model converge to the corresponding continuum model solution, under appropriate
scalings. Additional results in Section [2.4] show the model can be applied to interpret exper-

imental and clinical observations relating to breast cancer detection. Key algorithms used to

generate results are available on

2.3 Model description

In this section we describe the individual-based model, which we refer to throughout this work
as the discrete model, and derive a corresponding coarse-grained approximation in the form
of system of partial differential equations, which we refer to as the continuum description.
The continuum limit usually assumes that the number of discrete entities that makes up the
system tends to infinity [60}[68], while the size of the domain also tends to infinity, as in the
thermodynamic limit, or the size of a length scale tends to zero, both in such a way that the
ratio of the size of length scale to the number of discrete entities is fixed. Here, to maintain
a fixed total tissue length and a fixed total number of cells in the continuum limit, we instead
assume that each cell is internally represented by several identical springs. We then take the
continuum limit by considering that the number of springs per cell tends to infinity whilst the

spring length tends to zero.

2.3.1 Discrete model

In this work, the discrete model describes an epithelial tissue formed by cells in contact with
each other. For simplicity, we assume that the tissue can be modelled as a one-dimensional
chain of N cells with fixed total length L. Tissues in the body commonly evolve in confined
spaces, for example imposed by bone tissues, and are subjected to strong geometric con-
straints so we fix the left tissue boundary at =z = 0 and the right tissue boundary at x = L. This
also allows us to focus on internal cellular heterogeneity. Alternate free boundary conditions
are possible but we do not focus on such free boundary conditions in this work.
Each cell can have distinct mechanical properties (Figure [6.1). This model could be used to
represent a single tissue with intrinsic heterogeneity or multiple adjacent tissues with different

properties. Each cell interacts with its neighbour through an effective interaction force which


https://github.com/ryanmurphy42/Murphy2019.git
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(a) Stiffness in a human breast cancer biopsy

500 zm

Core Periphery

(b) Model schematic for heterogeneous cells, with m springs per cell

(c) Special case of model schematic with two adjacent tissues
k k

1 2

x=0 4 X =5(t) 4 X=L

Figure 2.1: Stiffness heterogeneity in biological tissues. (a) Post atomic force microscopy histological
overview of an entire breast cancer biopsy, where dark regions and pink regions are associated with
low and high cell stiffness, respectively. Reproduced from with permission. (b) Individual-based
model schematic for arbitrarily heterogeneous tissue with N cells and m identical springs per cell. Cell
1 occupies the region z;(t) < = < z;4+1(t) has cell stiffness k; and resting cell length a;. Spring v in cell
i, occupies the region =" (t) < z < 2“1 (¢), is prescribed with spring stiffness k") = mk; and resting
spring length a§”> = a;/m. The first and final spring boundaries in cell i coincide with the cell boundary

positions so that xz(l)(t) = x;(t) and xﬁr)l(t) = x;41(t) for all time. The cell and spring boundaries are
shown as discs and hexagons, respectively. (c) Individual-based model schematic for a special case
with two adjacent tissues, similarly this could model a heterogeneous tissue with two cell types. Cells
in tissue 7 are prescribed with cell stiffness k; and resting cell length a; for i = 1,2. Here each cell is

represented with a single spring. The position of the interface between the two tissues is at x = s(t).
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could represent cell-cell adhesion or compressive stresses [231]. We consider cell i, for
i=1,2,...,N,to have its left boundary at z;(¢) and its right boundary at ;1 (¢), with z;(¢) = 0
and zn41(t) = L at all times. The cell has a prescribed cell stiffness, k;, and resting cell length,
a;. Inside the tissue, Newton’s second law of motion governs the motion of each cell boundary
such that

d2a;

M; 21 = fir1 _fi+EViSC, 1=2,3,..., N, (231)

dt

where M; is the mass associated with cell boundary 1, F;isc is the viscous force associated

with cell boundary i, and we model interaction forces at cell boundary i using Hooke’s law,
fi=kia(ri—2i1—ai-1), i=1,2,...,N. (2.3.2)

The viscous force experienced by cells, due to cell-medium and cell-matrix interactions, is
modelled with FYs¢ = —ndz;(t)/dt, where n > 0 is the viscosity coefficient. Cells migrate

in dissipative environments and this is commonly modelled by assuming that the motion is
overdamped [[151}[164], hence the term on the left of Equation (2.3.1) is zero, giving,

n%:fkklifh 222)375]\7 (233)

This model, as presented thus far, considers each cell to be represented by a single spring
[164] which is sufficient to describe the discrete model. However, when we derive the continuum
model, to maintain L and N, we represent each cell internally with m identical springs and we
will later consider m > 1, which corresponds to the spring length tending to zero, see Section
[2.32.3.2] The corresponding discrete model for m springs per cell is now described. Cell i
with boundaries x; and z; 1 how has m + 1 spring boundaries, xl(l),m?), e ,xg’”),ngl, with
T = :cgl) and z; 41 = xl(}r)l (Figure c)). The cell length is related to the spring length through
the scaling ;11 — 2; ~m (a:ﬁ”” — a:z(”)) as m — oo, and with equality for all m as ¢t — oo.

Each spring v in cell i is prescribed with a spring stiffness kg”) and resting spring length a§”>

related to cell properties k; and a; through

Y =k, oW =% i=192... N, v=1,2,...,m. (2.3.4)
m
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The viscosity coefficient for a cell boundary, 7, is related to the viscosity coefficient for a spring

boundary, n*), through n*) = 5 /m. Then the corresponding spring boundary equations are

®)

dz;
)4~ _ pv+D) (V)
”7 - f’L f
dt (2.3.5)
fz(u) _ k:Z(V—l) xl(y) . $§V—1) . al(u—l)i| .

The scalings in Equation and for the viscosity coefficient are chosen such that the cell
boundary velocities are maintained and are independent of m, i.e. such that da: /dt dx; /dt.
These scalings are supported by results from the discrete model with varying m, see Section
2.4

The discrete model is governed by Equation with the fixed boundary conditions for
a system with a single spring per cell, and by Equation (2.3.5) with fixed boundary conditions
for a system with m springs per cell. In each situation the discrete model forms a deterministic
coupled system of ordinary differential equations that we can solve numerically, see Supple-
mentary Material Section 1. We can also solve each system with an eigenmode decomposition

to conveniently determine the long-time steady state solution.

2.3.2 Derivation of continuum model

We now derive a coarse-grained system of partial differential equations describing the evolution
of cell density at a larger scale. To do so we take the continuum limit by increasing the number
of springs per cell, m, while maintaining the total number of cells, N, and tissue length, L, fixed,
and by performing spatial averages over length scales involving a sufficiently large number
of cells to define continuous densities, but sufficiently small to retain spatial heterogeneities.
We first define the microscopic cell density, ¢(z,t), in terms of the spring boundary positions,
:1:2(.”) (t), as

1 N m
Ezzé(x_w H), (2.3.6)

i=1 v=1

<.

where & is the Dirac delta function [60][133]. Integrating Equation (2.3.6) over the tissue domain,
0 < z < L, gives the total number of cells, N, which is independent of m. We introduce a
mesoscopic length scale 6z such that a§”> < a; < dr < L and define a local spatial average

which, for the microscopic cell density, ¢(z,t) = (§(z,t)), is

x40z
e t) =55z [t 23.7)
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Differentiating Equation (2.3.7) with respect to time leads to the general conservation law

where we use properties of the Dirac delta distribution and take the spatial derivative
outside of the average by making use of the fact that 6x is small. The averaged term on the right
of Equation is the coarse-grained cell density flux, j(z,t), describing spring migration
at the mesoscopic scale, expressed explicitly in terms of the spring boundary positions and
velocities [60]. We now introduce three field functions, f(z,t),k(x,t),a(z,t), for the cell-cell

interaction force, the cell stiffness and the resting cell length, respectively, defined such that

f (965”) (t),t> =k (x§”> (t),t) =mk"), a (ml(.”) (t),t> _ ﬁ, (2.3.9)

m

where the scalings for f, k, and a, with respect to m, agree with the scalings from the discrete
system, see Equation (2.3.4). The field functions k(z, t) and a(z, t) capture the assumption that
spring properties and respective cell properties are constant along spring boundary trajecto-
ries, x§”> (t). To represent the distribution of spring lengths across the domain, we introduce a

continuously differentiable function, I(x, t), which we define such that
(o (0).1) =1 (1) =2 1) - 2, (2.3.10)

where ZZ(”) < a; < dxr < L. Writing Equation 1» in terms of these continuous variables,
expanding each cell-cell interaction force using the small parameter ll(”), using the viscosity

coefficient scaling, and simplifying to leading order gives,

ndz”(:) - [fi(uﬂ) o fi(u)} —m {f <$§u+1)<t>7t) _ <xgu) (t),t)}

_ maf(‘cgy)(t)’t)lgu) Lo (er) '

ox

(2.3.11)

Substituting Equation (2.3.11) into Equation (2.3.8), relating the spring length to the cell den-
sity with 1 (xgl/) (t),t) =1/ {mq (xl(") (1), t)} and integrating over the spatial average interval,
(x — dx, x + dx) gives

n

. 1 11 & (o (V)() ) o
j(z,t) = %(%) nzlm; q(xl(y)(t),o

, (2.3.12)
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where n is the number of cells in the interval (z — dz,x + dx) and i has been reset to count
these cells. Then, taking the limit as m — oo and performing an average over the m springs

per cell, gives

, 1y noy L 0f(xi(t),1) 1
](x,t)—g<%)ﬁz e TN (2.3.13)

i=

We apply a mean field approximation, as n > 1 in (z — dx,z + dz) due to a; < bz, by
substituting ¢(z;(t),t) and df(x;(t),t)/0x in the sum with the average density ¢(x,t) and the
average interaction force gradient 9f/0x in the interval (z — dx, x + dx). The factor 1/¢ is now
independent of 7 and cancels with the factor n/(26x) which represents the density of cells in

the spatial average interval. Then the coarse-grained cell density flux is

_10f(x,t)
T n Oz

j(z,1) : (2.3.14)

which provides us with an important physical interpretation and is directly related to the ve-
locity, net force and cell-cell interaction force gradient. By inspection of Equation (2.3.11) and
Equation (2.3.14), we see that the cell density flux, j, is an advective flux j = qu, where
u(x,t) = (dz;/dt) is the average velocity induced by the average force gradient (0f/0x). We
also see that the net force is given by 7j/q and the spatially averaged interaction force gradient

is given by nj.

Substituting Equation (2.3:74) into Equation (2.3.8) gives

dq(x,t) 1 0% f(x,t)

S = "7 g (2.3.15)

We now return to Equation (2.3.9) and differentiate with respect to time to derive an evolu-

tion equation for the cell stiffness function

) ) )
0= % [k (2 (0).1) = mi"] = Ok (%at(t),t) N dx§d ; (t) Ok (xzax“)’t) ‘ (2.3.16)

Using Equation (2.3.11) and similar developments, the evolution equations for the cell stiffness

and resting cell length expressed in terms of mesoscopic variables become

Ok(z, t)
ot

+u(z, t) akéi’ D _o, (2.3.17)
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da(x,t) da(x,t)

= 2.3.18
5 u(z,t) o 0. ( )

Written in terms of velocity we identify the left-hand sides of Equations (2A.2.2) and (2A.2.3)
as the convective derivatives of the cell properties.

In summary, the governing equations of the coarse-grained model are given by Equations

@A217), (2A.2.2) and (2A.2.3) with the interaction force f given by

Fz,t) = k(a:,t)( - a(:c,t)). (2.3.19)

1
q(z,t)

This results in a system of four self-consistent equations for the continuous fields ¢(z, t), k(x, t),
a(x,t), f(z,t) in terms of spatial position rather than particle trajectories. The initial conditions

for the average cell density, cell stiffness and resting cell length are
q(z,0) = qo(z), k(z,0) =ko(z), a(z,0)=ao(z), 0<xz<L, (2.3.20)

together with no flux boundary conditions for the average cell density, due to the microscopic
motion constraints, and Dirichlet boundary conditions for the cell stiffness and resting cell

length, as cell properties are constant along cell boundary trajectories,

Of (z,t)
ox

=0, k(z,t)=ko(z), a(z,t)=ao(x), z=0,L. (2.3.21)

These governing partial differential equations (2A.2.7), (2A.2.2), (2A.2.3), (2A.2.4) are solved
numerically with the initial conditions (2.3.20) and boundary conditions (2.3.21), see Supple-

mentary Material Section 2. With homogeneous cell populations the governing equations re-

duce to the single nonlinear density diffusion equation previously derived in [164],

dg 0 ([ k dOq
R (s 2 I .3.22
ot Ox <77q2 836) (2.3.22)
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2.4 Results and discussion

In this section we compare solutions of the continuum and discrete models with the expectation
that as the number of springs per cell, m, increases solutions from the discrete model converge

to the corresponding continuum solution.

2.4.1 Homogeneous cell population

We first consider a homogeneous cell population, with one spring per cell, m = 1, to illustrate
the time evolution of the cell density flux during mechanical relaxation of the tissue. To compare
results from the discrete and continuum systems we choose the initial cell configuration (Figure

[6-2)a)) to represent a normally distributed cell density,

A —(z — p)?
= L 2.4.1
qo(x) s exp ( 552 , 0<z<IL, ( )

with mean position . = 5 and variance ¢ = 3. We choose )\ to satisfy fOL qo(z) dz = 40
so that with L = 10 the total number of cells is N = 40, see Supplementary Material Sec-
tion 1. Then, using the discrete model, we observe that the system relaxes to a uniform cell
distribution (Figure [6.2(a)). Figures[6.2(b) and [6.2]c) show how the density and velocity, re-
spectively, propagate along the cell boundary characteristics and demonstrate that the system
undergoes temporal relaxation to a steady state configuration. With an eigenmode decom-
position of the governing equations of the discrete system, given by Equation and the
fixed boundary conditions, we find all eigenvalues are negative which explains the exponential
decay behaviour.

We determine the discrete cell density as the inverse of the spacing between cell boundary
trajectories, ¢; = 1/(x;+1 — x;) and we assign this value throughout the region z; < z <
x;+1. We now compare this discrete information with the density from the continuum system,

g, obtained by solving Equations (2A.2.7), (2A.2.2), 2A:2.3), and (A:2.4). In Figure [6.2(d)

we see that the initially normally distributed density tends to the uniform density O, given by

tlim q(z,t) = Q = N/L, which is independent of £ and a. From Equation (2A.2.1) we see that
—00

this motion is driven by imbalances in the local interaction force field. We relate this to the
velocity, v = (0f/0x)/(nq) from Section and we see that as the local imbalances tend to
zero the cell boundary velocities tend to zero (Figure [6.2)e)). Due to fast dynamics followed by
slow long-term dynamics, results for t = 10 and ¢ = 60 are mostly overlapping with the steady
state (Figure[6.2fe)). This agrees with the interpretation of the discrete system from Equation
(2.3.3).
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Figure 2.2: Results for homogeneous k and a, with N = 40 and m = 1. (a) Snapshots of cell bound-
ary positions and cell lengths at ¢ = 0,5,15,60. (b) Characteristic diagram for cell boundary position
evolution for 0 < ¢ < 65. Colour denotes the cell density. Black lines with dots represent snapshots
in (a) and (d). (c) Characteristic diagram for cell position evolution for 0.0 < ¢ < 0.8. Colour denotes
velocity. Black lines and dots represent snapshots in (e). (d) Cell density snapshots at ¢ = 0,5, 10, 60.
Results from discrete/continuum system displayed as stepped/solid lines. (e) Velocity snapshots at
t = 0.0,0.4,10.0,60.0. Results from discrete simulation and continuum system displayed as dashed/solid
lines. Arrows indicate the direction of increasing time.
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2.4.2 Heterogeneous cell population

Here we present results for slowly-varying-in-space and piecewise constant heterogeneous

cell populations.

Slowly varying cell population

For slowly-varying-in-space cellular properties, we explore how solutions of the discrete system
converge to the solution of the continuum system as m increases. We consider heterogeneity
in k and homogeneous « so that, on average, cells are in compression. Figure [6.3]depicts how
the system relaxes to a non-uniform density distribution, due to cell stiffness heterogeneity, as
the velocity field « tends to zero. From this simulation, we observe higher density in regions

of higher k. This prediction agrees with the steady state solution to the coarse-grained model,

governed by Equations (2A.2.1), (2A:2.2), (2A.2.3), and (2A.2.4),

K(z)

) = K@) Aw)

(2.4.2)

where Q(x) = tliglo q(z,t), K(z) = tligao k(z,t) and A(z) = tl—i>r£o a(z,t), are steady-state solu-
tions and b is a constant of integration that is related to N. We also observe that, as cell
properties are constant along trajectories, the cell stiffness evolves at a fixed location in space.
We see in Figure [6.3|d-h) that there is close agreement between the discrete model and the
continuum solutions as m increases. It is notable that even for low m we have excellent agree-
ment between the discrete density and the continuum density at the centre of each spring.
However, at spring boundaries the agreement does not hold as well for low m. We see sim-
ilar discrete-continuum agreement when we consider other examples with heterogeneous &
and homogeneous a, with homogeneous k and heterogeneous a, and heterogeneous k and

heterogeneous a (Supplementary Figures S3-S6).
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Figure 2.3: Results for heterogeneous k£ and homogeneous a with N = 10, ko(x) = 1 + 0.1(z — 5)2,
and ao(z) = 0. (a,b) Characteristic diagram for spring boundary position evolution for 0.00 < ¢ < 16.25,
with m = 4 so that every fourth trajectory represents a cell boundary. Colour denotes (a) cell density,
(b) cell stiffness. In (a,b) black lines and dots represent times for snapshots in (c-h). (c,e,g) Cell density
snapshots at ¢t = 0.0,2.5,15.0. (d,f,h) Cell stiffness snapshots at ¢t = 0.0, 2.5, 15.0. In (c-h) lines display
results for N = 10 with m = 1, 2, 4, and continuum system.
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Piecewise constant cell population

In this section, we consider a simple scenario with two adjacent tissues, modelled by assuming
sharp inhomogeneities in cellular properties. This may represent the boundary between a
malignant tissue and a normal tissue. We first explore how solutions from the discrete system
converge to the corresponding continuum solution as m increases, under these rapidly-varying-
in-space conditions. Each tissue has homogeneous cell properties given by cell stiffnesses
k1, ko and resting cell lengths a1, as in the left and right tissue, respectively, with interface
position s(¢) (Figure [6.1[b)). For initial conditions, we choose a uniform density, go(z) = 1, cell
properties ky = 1/2,ka = 1,a1 = az = 0, L = 10 and s(0) = 5, respectively. The cell stiffness
discontinuity rapidly induces a sharp change in the density at s(¢) followed by slower dynamics
until reaching a piecewise constant steady state as ¢t — oo (Figure [6.4). Even with these
sharp inhomogeneities we again observe close agreement between solutions of the discrete
and continuum models, especially for the cell stiffness, k, where it is difficult to distinguish
between the discrete model with different m and the solution of the continuum model. For the
cell density, g, we again see that agreement at the spring boundaries improves as we increase
m. This holds especially well given that the numerical discretisation of the continuum model
does not explicitly follow the location of the interface, see Supplementary Material Section 2. It
could however be determined by evaluating the velocity, ds(t)/dt = u, at the interface position.

This simple mechanical relaxation scenario between two tissues enables us to infer some
information on the cellular-level properties k; and a; by considering the evolution of the interface

position, s(t). The steady state interface position, S = tli}m s(z,t), is given by

kiay L _
e TN, 2
S=—"2—21—
1

= (2.4.3)
ko N1 + Ny

which depends on ki /k2, a1 and as. Here Ny and N, represent the total number of cells in
the left and right tissues, respectively, see Supplementary Material Section 3. We can identify
S and L — S as the lengths of the left and right tissues, respectively, after their mechanical
relaxation.

To investigate the influence of k1 /ko we vary k1 and set k; = 1. As we have fixed boundaries
atzx =0and x = L, we set a; = a2 = 0 to emphasise properties when we vary k;, and choose
a uniform density initial condition and N; = N» = 5. Evaluating s(¢) numerically, for efficiency
with the discrete model from Equation (2.3.3), and S from Equation , shows that if
k1 = 0then § = L and the left tissue occupies the entire domain. As k; — oo then § — 0 the

length of the left tissue decreases (Figures [2.5)a,c)).
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Similarly, to investigate the influence of a1, a2 we consider a;/as, vary a; and set ay = 1.
We set k1 = k» = 1 which only impacts the rate at which we reach the long-time solution. In
contrast to varying k;/ks, steady state results depend on the choice of a9, not just the ratio
a1/az, see Equation (2A.3.4). For example, when a; = 0 then S = 2.5 which corresponds
to a non-zero minimum left tissue length and a maximum length for the right tissue. We also
observe that S is proportional to a; (Figures[2.5(b,d)).

We find that we can use the interface boundary velocities to infer cellular-level properties.
Plotting |S — s(t)| on a logarithmic scale against time shows that we can determine k; /ko from
the gradient of the linear section and we can determine a;/ay from the y-intercept (Figure
[2.5(e.f)). We find that it is easier to distinguish the ratio k; /k, than it is to distinguish the ratio
a1 /as9. If the second tissue was a reference material with known ks, a2 we could then determine

]{51,(11.
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Figure 2.4: Results for piecewise constant cell properties, with N = 10. (a,b) Characteristic diagram for
spring boundary position evolution for 0 < ¢ < 100, with m = 4 so that every fourth trajectory represents
a cell boundary. Colour denotes (a) cell density, (b) cell stiffness. In (a,b) black lines and dots represent
times for snapshots in (c-h). (c,e,g) Cell density snapshots at ¢ = 0.0,2.5,80.0. (d,f,h) Cell stiffness
snapshots att = 0.0, 2.5,80.0. In (c-h) lines display results from N = 10 with m = 1, 2, 4, and continuum
system.
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Figure 2.5: Variation of relative cell stiffness, k1 /k2, and relative resting cell length, a; /a2, in a model
with two adjacent tissues and a constant density initial condition. (a) Characteristics of the interface
position for varying ki /ke. The right tissue has fixed cell stiffness k2 = 1 while the left tissue cell
stiffness is varied. (b) Characteristics of the interface particle for varying a,/as. The right tissue has
fixed resting cell length a; = 1 while the resting cell length of the left tissue is varied. Analytical solution
for the steady state position of the interface position with given (c) relative cell stiffness and (d) relative
resting cell length. (e,f) Absolute difference between position and steady state for interface position for
increasing time for varying (e) relative cell stiffness and (f) relative resting cell length.
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2.4.3 Case study: breast cancer detection

Recent experiments have proposed a new method to classify breast biopsies in situations
where standard histological analysis is inconclusive [T26[128}[182]. The method is based on
determining the stiffness histogram distribution of the tissue using atomic force microscopy.
Normal tissues are associated with a single, well-defined unimodal stiffness peak, whereas
malignant tissues are associated with a bimodal distribution with a prominent low-stiffness
peak. Using our mathematical model, we are able to gain more insight into the differences
in mechanical properties of normal and malignant tissues at the cellular level, in particular,
the role of the resting cell length, which is not an easy quantity to measure experimentally. It
would be impossible to interpret this experimental data with previous models that deal only with
homogeneous cell populations.

For this case study, as the experimental data is relatively discrete, we use the discrete
model, which we consider to be a sufficiently simple yet insightful portrayal of the biological de-
tails. We set the initial state of the system by assuming a uniform initial density distribution and
by assigning the cell stiffness of the i cell, k;, so as to reconstruct the unimodal stiffness pro-
file from Figure 1b (top) in [T82]. To do so, we normalise the experimental stiffness histogram
and interpret the normalised value as the length fraction of the tissue containing stiffness in
the given histogram bin (Figure [2.6)a)). This is consistent with the experimental method which
implicitly assumes that the probability a cell is examined during a biopsy is proportional to its
size [182]. To estimate k;, we randomly sample the unimodal stiffness distribution and arbitrar-
ily assign them to cells i = 1,2,..., N in ascending order. Note that the ordering of the cells
does not affect our results or the interpretation of our results in any way. We assume N = 1000,
m = 1 and L = 10 for illustration purposes. In order for this initial setup to be in equilibrium
despite the heterogeneity in stiffness in the tissue, the resting cell lengths a; must be cho-
sen heterogeneously, per the steady state system of discrete equations, see Supplementary
Material Section 4.

We proceed to consider how a bimodal stiffness distribution, associated with malignant tis-
sues, could arise from such an initial state with a unimodal stiffness distribution. The simplest
explanation is that a bimodal stiffness distribution may arise as a result of changes to individual
cell stiffnesses, k;, e.g. due to some pre-cancerous biological mechanisms. This model
provides an alternative interpretation where the bimodal distribution may arise from changes
not solely to the individual cell stiffnesses but to the resting cell lengths also. We now present
an extreme case where the bimodal distribution may arise from changes in the resting cell

lengths only. Specifically, when we simulate the discrete model with the initial conditions as
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above, but modify the heterogeneity in the resting cell lengths, a;, to a bimodal profile with
high a; for very low k;, without changing their stiffnesses, k;, the cells redistribute themselves
in the tissue in such a way that the tissue stiffness histogram develops a bimodal distribu-
tion at mechanical equilibrium (Figure [2.6{c)). We note that this result is not surprising due
to the coupling of cell stiffness and resting cell length in the mathematical model. However,
this intuitive result may not have been clear had we relied upon experimental data and ex-
perimental observations alone. In addition, this approach assumes that cells may have very
different lengths which is consistent with biological observations. Specifically, it is understood
that breast cancer cells are less stiff and, in general, have a larger diameter in comparison to
normal breast cells [230]. This is consistent with other areas of biology, for example, in the
context of melanoma biology it is well accepted that cancer cells can be smaller than healthy
cells [92,[93]. We also note here that changes in the resting cell lengths have been assumed
in other works to model two-way feedback between mechanical tensions and signalling

and here could similarly represent some unknown underlying pre-cancerous biological mech-

anisms.
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Figure 2.6: Breast cancer detection case study. (a) Initial unimodal stiffness distribution, normalised
by tissue length fraction, associated with normal tissues. (b) Initial cell stiffness k; and modified resting
cell length a; for each cell i = 1,2, ...,1000, leading to a bimodal stiffness distribution. (c) Steady-state
stiffness distribution obtained with the modified resting cell lengths, exhibiting a bimodal distribution
associated with malignant tissues.
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2.5 Conclusion and future work

In this work, we present a one-dimensional cell-based model with heterogeneous cell proper-
ties, and its coarse-grained continuum approximation. The motion of cells is driven by cell-cell
interaction forces which could represent cell-cell adhesion or compressive stresses [237].
Heterogeneous cell properties, cell stiffness and resting cell length, are constant for each cell
and are transported in space by cell movements. The continuum limit is taken by increasing the
number of springs per cell, while maintaining the number of cells in the tissue and its fixed total
length, and by considering spatial averages over length scales involving a large enough num-
ber of cells to define continuous densities but small enough to retain spatial heterogeneities.

Our results shows that solutions of the discrete model approach the solution of the contin-
uum model as the number of springs per cell increases whilst the spring length tends to zero,
even for rapidly varying spatial cell properties. Excellent agreement is observed even for few
springs per cell at the centre of each cell. For the examples presented in this work, we find
that the solution of the discrete model can be obtained much faster than the solution of the
continuum model. However, the time required to simulate the discrete model increases rapidly
with the number of cells. In contrast, the time required to simulate the continuum model is
independent of the number of cells. Therefore, when we have large numbers of cells, as in an
epithelial tissue, the continuum model is advantageous. Another advantage of the continuum
model is that we can quickly develop exact closed form expressions for the long-time inter-
face position which are more difficult to establish with the discrete model. Furthermore, the
continuum model allows us to understand macroscale phenomena which are not obvious from
microscopic interactions. The fact that the cell density flux in the continuum model, a macro-
scopic quantity, is explicitly related to the gradient of the cell-cell interaction force may have
been anticipated, but it is not obvious from the microscopic interactions that this leads to an
effective non-linear diffusive transport. Finally, because the continuum model exhibits explicit
relationships between macroscopic quantities, it will be more useful for inverse problems.

By dealing explicitly with heterogeneous cell populations, this model has many potential
applications. The first application we consider is a simple tissue relaxation simulation, where
we track the position of the interface between two distinct adjacent tissues as the system me-
chanically relaxes, to infer cellular-level properties. Results suggest it is easier to determine
the relative cell stiffnesses than it is to determine the relative resting cell lengths. Results also
show that when cells are, on average, in tension a tissue with lower stiffness extends and
compresses a tissue with higher stiffness. In the second application, we use the model to

interpret recent experiments in breast cancer detection which reveal distinct stiffness profiles
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associated with normal, benign and malignant tissues [182]. We show that a bimodal stiffness
distribution, associated with a malignant tissue, could arise from a unimodal stiffness distribu-
tion, associated with a normal tissue, from changes not just in cell stiffnesses but from changes
in the resting cell length’s only. The resting cell length is not an easily measured experimental
quantity and these results suggest that this could be an important variable to consider.

Many extensions of this work are possible, both mathematically and biologically. Important
extensions will be to introduce cell proliferation (Chapters and [5), apoptosis (Chapters
and [B), and free boundaries (Chapters [4, and [5) where the continuum limit is less obvi-
ous [T9}[136][164]. Another interesting extension will be to generalise the cell-cell interaction
force law to include nonlinear effects for large separations [19}[165]. Finally, the model’s ability
to relate cellular-level stiffness data and tissue-level information has many potential extensions
biologically including applying the model to particular scenarios such as epithelial tissue me-

chanics, cancer progression [T70][T93], cancer detection [T03][182}[221], wound healing [61],

and morphogenesis [66].
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2A.1 Discrete model simulation

In this section, we describe how to perform simulations with the discrete model.

2A.1.1 Discrete equations

Here, we describe the method to solve Equation (2A.1.1), governing the discrete model, with

m springs per cell, for the position of each spring boundary, xl(”), fori=1,2,...,N and
v=12,...,mand xg\l,lrl The equations are included here for convenience:
wdz oy L (2A.1.1)
e Sl N
f.(’/) — b (IE(V) — g a(y_l)) . (2A.1.2)

2A.1.2 Converting cell density into initial positions

We now explain how to convert an initial distribution of density, ¢o(z), into an initial condition
for the discrete model by determining the initial spring boundary positions, xl(”) = J:EV)(O), for

1=1,2,...,Nandv =1,2,...,m, and x%)ﬂ To solve for these positions we use the Matlab

fsolve function [5] applied to the system of the equations

wgn —0, (2A.1.3)
1 N 1
R A i 10| 0 (2A.1.4)
J)EV—H) B xl(y—l) oz — )
2
AV =L (2A.1.5)

Equations (2A.1.3) and (2A.1.5) arise from the fixed boundary conditions. Equation (2A.1.4)

arises from equating the approximate numerical gradient of the density from the discrete sys-

tem at a position m§”> with the gradient of ¢y(x) at the same position. To evaluate the numerical
gradient we use the midpoints of the domains =" " < z < 2!*) and 2"} < z < 21" The
density in the first domain is given by 1/ [m (x§”> — mg”_l)ﬂ and similarly 1/ [(m(xE”H) - a:g”)ﬂ

for the second domain (Figure [ST).

2A.1.3 Assigning spring properties

In this section we explain our approach to assigning spring properties assuming that we know

the initial cell boundary positions, =), the initial cell stiffness distribution, ko(z), and initial
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Figure 2A.1: Schematic to determine the approximate numerical gradient of the density from the dis-
crete system at position z7.

resting cell length distribution, ag(x). Here we consider the cell stiffness initial condition and

note that the same ideas apply to assign the resting cell length. We consider spring v in cell

i, located at 2" < z < 2"*V: let 7’ be the position of the median of ko(z) in this domain,

and use this to define the discrete spring stiffness as kg”) = mko (%E’”) (Figure . For the
resting cell length this would be a§”> = ay (@(”)) /m. This median position, %E”), is solved for
by equating the integral of the initial condition spring stiffness function in xg”) <z < 55” and

) (v+1)

~(v
T, <z<uw

giu) $(~V+1)

/a:(.”) ko(x) dz :/ Z ko(x) dz. (2A.1.6)

)

2A.1.4 Numerical methods

This discrete model, with m springs per cell, is governed by Equations with the fixed
boundary conditions x?) = 0, :cg\l,lrl = L. Appropriate scalings of the cell properties are
required to determine the spring properties, k:E”) = mko (%E”)) and a§“> = ag (@(”)) /m. The
viscosity coefficient must also be scaled appropriately through ") = n/m. These form a
system of Nm — 1 ordinary differential equations, with the two boundary conditions, and initial
conditions for the positions, xl(”), spring stiffnesses, kg”), and resting spring lengths, a§”>, of
each spring v in cell i, and viscosity coefficient for the system, n(*). We solve this system
using Matlab ode15s [199]. Alternatively, this system can be analysed with an eigenmode

decomposition which is convenient to determine the steady state.
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Figure 2A.2: Schematic to determine the position 55”) used to define the discrete spring stiffness value
for spring v in cell i, kl(”) = mko (35”)

2A.2 Continuum model simulation

Here we describe the numerical method used to solve the partial differential equations associ-

ated with the continuum description.

2A.2.1 Discretisation scheme

For convenience we re-state the governing equations:

dq(x,t) 1 0% f(xz,t)

&) _ 1970, (2A.2.1)
aag, t) _ _;q(; - giaaéz, 28 (2A.2.3)
Fat) = Kz, <q(x,t) - a(;v,t)). (2A.2.4)

The first step is to substitute the interaction force from Equation (2A.2.4) into Equations

@A21), (2A.2.2) and (PA.2.3). We solve Equation (2A.2.7) implicitly, and we solve Equations
(RA.2.2) and (2A.2.3) for the cell stiffness and resting cell length, respectively, explicitly [50].

First, we uniformly discretise the domain with nodes spaced Ax apart. The nodes are indexed

j=1,...,R, where R is the total number of spatial nodes. We apply an upwinding scheme

using a numerically determined velocity at each node, which is defined for node j and time
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step n as v, given by

s 1 —1 [l{” <1 ” > k" <1 " ﬂ (2A.2.5)
’U, = — . —_— a —_ s —_ a_ . . .
J 77(1? Jj+1 q}l+1 j+1 j—1 q}ll j—1

We use non-constant time stepping for efficiency with the timestep to advance the numerical
solution from timestep n to timestep n+1 denoted At™. The value of this timestep is determined
based on the maximum numerical velocity across all nodes at time n, max;(v}), and is chosen
as At" = min (O.OOI(Am)Q,0.00001(Am)2/maxj(v§‘)>, where Az = 0.01 to produce Figure 4
and Supplementary Figures [S3} [S4and[S6] and Az = 0.05 otherwise.

We solve Equation (2A.2.1) using a Crank-Nicolson approximation. At the central nodes

we have

n+l
qj

¢ _ 11 [k;ul(l _a,ﬂ)_ﬁ@_a.)g%(l 1)]
Atn 2(Az)2| n \gby, n\q¢ "’ n \g,

s (o) 20 (o) o 5 (o]
-5 =1 )| =2\ 57— |+ g7 — %1 ) |»
2(Ax)?| 0 \gr} n \gtt n \gt

J

j=3,...,R—2,n=0,...T,

(2A.2.6)
where we use the approximation
1 gt
J
ntl 27 (2A.2.7)
()

for the terms at timestep n + 1 on the right-hand side of Equation (2A.2.6). This approximation
allows us to write the discretised system of equations in tridiagonal form. For the boundary

condition at = = 0, corresponding to node j = 1, we apply a second order forward difference

4k (1 k% 1
q"zl/ [a”—l—i(n—a")—%(n—a”)} 2A.2.8
1 T3 \ @ 2 367 \ g 3 ( )

To obtain the equation for node j = 2 we set j = 2 in Equation and replace ¢} with
Equation (2A.2.8). Similarly, to obtain an equation for node j; = R at the right boundary x = L

stencil so that

we apply a second order backwards difference stencil,

k% 1 Ak 1
no_q n ""R=2{( 1 ' n dkp (1 |
i / [aR 3k% <q17%_2 aR?) - 3k \ b, GRp—1 (2A.2.9)

This allows us to form an equation for node j = R — 1 also. Now we use the Thomas algorithm
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[254] to advance one time step for the equations governing nodes ;7 = 2,..., R — 1. Using
the results for nodes j = 2,..., R — 1 and Equations (2A.2.8) and (2A.2.9) we can update the

boundary nodes ¢}, gj;t".

While performing each temporal step we must also update the cell stiffnesses, k7', and
resting cell lengths, a7, at each node. At the boundaries, = = 0 and = = L, corresponding to
nodes j = 1 and j = R, these cell properties are fixed so k7 = k¥ and a} = al forn =1,...,T.
For the interior nodes j = 2,..., R—1, we apply an explicit method with upwinding. The sign of
max; (v} ) determines whether we apply forward or backward difference stencils. For example,
if max;(v}) > 0 then we apply a backward first order difference to the cell stiffness, Equation

(2A.2.2),

Ertl _ gn 1 k" — k7 1 1
Jij:——]ig’l Pl = —af | =Ky | 57— —aj1 ]|, 5=2,...,R—1.
Atn n  (Az) qa; 41

(2A.2.10)

Cell properties are constant along cell boundary trajectories. Therefore, if we have a cell
property which is initially homogeneous it will remain homogeneous. The numerical method
can then be simplified by not simulating the related cell property equation and replacing its

appearance in the other equations with its constant value.

2A.3 Steady state analysis for two tissue model

We obtain an analytical expression for the steady state position of the interface, S, between
two distinct adjacent tissues. Suppose that the left-most tissue is characterised by N; cells
with stiffness k; and resting spring length aq, for 0 < = < S. Similarly, suppose that the
right-most tissue is characterised by N, cells with stiffness ks and resting spring length as
for S < x < L. Considering the continuum system given by Equations (2A.2.1), (2A.2.2),
(2A.2.3), and (PA.2.4) for each tissue at steady state, the equations governing the evolution

of the cellular properties are trivially solved as we have a homogeneous cell population in
each tissue. However, solving Equation (2A.2.1) and applying the no flux density boundary

conditions gives, for the first tissue,

<—a1> =c, O0<z<S, (2A.3.1)
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where ¢; is an arbitrary constant. At steady state the forces at the interface, x = S, are at

k1 <1 _ a1> _k <1 _ a2>_ (2A3.2)
n\4q1 n\q2

Relating this mesocopic density to the microscopic density for the tissue we have

equilibrium, giving,

Ny No
= = . 2A.3.3
q1 S’ qz L—-S ( )

Substituting Equation (2A.3.3) into Equation (2A.3.2) and rearranging gives

]{71(11 L a

N @2
S=F2__ N (2A.3.4)

T
kaoN1 Ny

2A.4 Breast cancer detection case study: model implementation

Here we present our method to obtain a user specified steady state cell stiffness histogram

consistent with the initial k£; by choosing the initial condition for the resting spring length, a;.

2A.4.1 Choosing the resting spring length to choose the steady state

The possible final steady state spring stiffness histogram distributions must be consistent with
the initial k; as spring properties are constant along cell trajectories. For illustrative purposes
we choose the steady state spring stiffness histogram distribution we wish to obtain as guided
by experimental results [182]. With this choice we can read off the histogram frequencies that
describe the coverage of the each histogram interval at steady state. For simplicity, we assume
that cells with k; in the same histogram interval are of equal length at steady state. Then the
length of each cell in a histogram interval is given by the total length of cells in the histogram
interval divided by the number of cells in the interval. As we have an initial ordering of the
cells and each cell length at steady state we can now readily determine the steady state cell
boundary positions. Returning to Equation (2A.1.1), with a single spring per cell, at steady
state and the fixed boundary conditions z; = 0,xx+1 = L, we now know every x; and k;
and we can solve this system of N + 1 nonlinear equations to find each a;, using fsolve in
MATLAB [B]. A simulation is then initiated with these a;. This simulation reaches the steady

state spring stiffness histogram distribution we chose to obtain.
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2A.5 Supplementary Figures

In this section we present the supplementary figures which are referenced in the main text.

Heterogeneous k and homogeneous a. Even though a is homogeneous, the resting cell
length is still a key factor as it determines whether the system is, on average, in extension
or in compression. This is determined by comparing the resting spring length, a§”>, with the
critical value, acit = L/(mN), which is the average length of a spring. In Figure 3 we consider
a < aerit SO that on average cells are in extension. We present other cases, where a = a.,;; and
a > aerit, iN Supplementary Figures[S3]and [S4 We choose the initial cell stiffness distribution
to be ko(z) =1+ 0.1[x — (L/2)]%. Figure depicts how the system relaxes to a uniform
density distribution, due to the combination of a = a.;; and the cell stiffness heterogeneity, as
the velocity field « tends to zero.

It is notable that even for low m we have excellent agreement between the discrete density
and the continuum density especially at the centre of each spring. However, agreement at the
spring boundaries does not hold as well for low m.

Heterogeneous a. We see similar discrete-continuum agreement when we consider exam-
ples with homogeneous k and heterogeneous a, and heterogeneous k and heterogeneous a,
see Supplementary Figures[S5and[S6] respectively. We observe higher cell density in regions
of lower a which agrees with the steady state solution to the coarse-grained model, Equation

(3.2) in the main paper.



CHAPTER 2A. SUPPLEMENTARY MATERIAL 62

k
(@ o q (b)
i ////1 \\\\\ 14 ’ 3.0
M (AN e R
- 1.0 -
2.0
10 08 10 -
0.6 L
15 15
0.0 25 5.0 75 10.0 0.0 25 5.0 75 10.0
() 3 d) 4
t=0.00
3k
2
(= x D
1 ﬂ
1l
%.o 25 5.0 75 10.0 %.o 25 5.0 75 10.0
(&) 3 . ® 4
t=2.50
2
1 _ﬂ__
%o 25 5.0 75 10.0 %0 25 5.0 75 10.0
@ 3 it500 ® 4
2
1
0
0.
()
0.00
+~0.05
0.10
0.0

Figure 2A.3: Results for heterogeneous cell stiffness and homogeneous cell spring length for cells in
extension, with N = 10, ko(x) = 1+ 0.1(z — 5)%, and ao(z) = 1. (a,b) Characteristic diagram for spring
boundary position evolution for 0.00 < ¢ < 16.25 with m = 4 so that every fourth trajectory represents a
cell boundary. Colour denotes (a) cell density, (b) cell stiffness. In (a,b) black lines and dots represent
times for snapshots in (c-h). (c,e,g) Cell density snapshots at ¢ = 0.00,2.50, 15.00. (d,f,h) Cell stiffness
snapshots at ¢ = 0.00,2.50,15.00. In (c-h) lines display results from m = 1 (blue), 2 (red), 4 (yellow),
and continuum system (black). (i) Characteristic diagram for spring boundary position evolution for
0.00 < t < 0.10. Colour denotes velocity. (j) Velocity snapshots at ¢ = 0.00 (blue), 0.05 (green), 2.50
(yellow), 15.00 (magenta). Dashed/solid line represent solutions from discrete model with m = 4 and
continuum model, respectively.
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Figure 2A.4: Results for heterogeneous cell stiffness and homogeneous resting cell length, for cells
on average in compression, with N = 10, ko(x) = 1+ 0.1(z — 5)?, and a¢(z) = 2. (a,b) Characteristic
diagram for spring boundary position evolution for 0.00 < ¢ < 16.25 with m = 4 so that every fourth tra-
jectory represents a cell boundary. Colour denotes (a) cell density, (b) cell stiffness. In (a,b) black lines
and dots represent times for snapshots in (c-h). (c,e,g) Cell density snapshots at ¢ = 0.00, 2.50, 15.00.
(d,f,h) Cell stiffness snapshots at ¢t = 0.00, 2.50, 15.00. In (c-h) lines display results from m = 1 (blue), 2
(red), 4 (yellow), and continuum system (black).
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Figure 2A.5: Results for homogeneous &k and heterogeneous « for cells on average not in extension
or compression, with N =10, ko(x) =1, and ag(z) = 0.05z. (a,b) Characteristic diagram for spring
boundary position evolution for 0.00 < ¢ < 16.25, with m = 4 so that every fourth trajectory represents
a cell boundary. Colour denotes (a) cell density, (b) resting cell length. In (a,b) black lines and dots
represent times for snapshots in (c-h). (c,e,g) Cell density snapshots at ¢t = 0.00, 2.50, 15.00. (d,fh)
Resting cell length snapshots at t = 0.00,2.50,15.00. In (c-h) lines display results from N = 10 with
m = 1 (blue), 2 (red), and continuum system (black).
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Figure 2A.6: Results for heterogeneous cell stiffness and heterogeneous resting cell length, with
N =10, ko(z) = 1+ 0.1(x — 5)% and ao(z) = 0.05z. (a,b,c) Characteristic diagram for spring boundary
position evolution for 0.00 < ¢ < 16.25 with m = 4 so that every fourth trajectory represents a cell bound-
ary. Colour denotes (a) cell density, (b) cell stiffness, (c) resting cell length. In (a,b,c) black lines and dots
represent times for snapshots in (d-/). (d,g,j) Cell density snapshots at ¢ = 0.00, 1.25, 15.00. (e, h,k) Cell
stiffness snapshots at ¢t = 0.00, 1.25, 15.00. (f,i,/) Resting cell length snapshots at ¢ = 0.00, 1.25, 15.00. In
(d-1) lines display results from m =1 (blue), 2 (red), 4 (yellow), and continuum system (black).
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3.0 Preamble

An article published in Bulletin of Mathematical Biology

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020). Mechanical cell competition in het-

erogeneous epithelial tissues. Bulletin of Mathematical Biology. 82:130. |d0i:10.1007/s11538
[020-00807-x] [oioRxiv preprinil

This chapter includes Publication 2, addresses objective 2 and research question 2. This
chapter extends the work of Chapter 2, by incorporating cell proliferation and cell death into
the model of Chapter 1. The key results include a discrete model describing mechanical cell
competition in heterogeneous epithelial tissues, a derivation to obtain the corresponding the
continuum model, and the continuum model. Using these new models we examine under what
conditions the discrete and continuum model show good agreement, explore the evolution of
homogeneous tissues and heterogeneous tissues with a cancerous cells competing for space
with healthy cells. We advise why naively adding source/sink terms to a continuum model
without considering the underlying discrete model may lead to incorrect results. Supplemen-
tary material, such as additional results for homogeneous and heterogeneous populations and

numerical methods, associated with publication 2, is presented in Chapter 3A.


https://doi.org/10.1007/s11538-020-00807-x
https://doi.org/10.1007/s11538-020-00807-x
https://www.biorxiv.org/content/10.1101/869495v2
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3.1 Abstract

Mechanical cell competition is important during tissue development, cancer invasion, and tis-
sue ageing. Heterogeneity plays a key role in practical applications since cancer cells can
have different cell stiffness and different proliferation rates than normal cells. To study this phe-
nomenon, we propose a one-dimensional mechanical model of heterogeneous epithelial tissue
dynamics that includes cell-length-dependent proliferation and death mechanisms. Prolifera-
tion and death are incorporated into the discrete model stochastically and arise as source/sink
terms in the corresponding continuum model that we derive. Using the new discrete model and
continuum description, we explore several applications including the evolution of homogeneous
tissues experiencing proliferation and death, and competition in a heterogeneous setting with
a cancerous tissue competing for space with an adjacent normal tissue. This framework allows
us to postulate new mechanisms that explain the ability of cancer cells to outcompete healthy
cells through mechanical differences rather than an intrinsic proliferative advantage. We ad-
vise when the continuum model is beneficial and demonstrate why naively adding source/sink
terms to a continuum model without considering the underlying discrete model may lead to

incorrect results.
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3.2 Introduction

In cell biology, epithelial tissues are continuously experiencing forces and replacing cells,
through cell proliferation and death, to maintain homeostasis. These tissues can be naturally
heterogeneous or heterogeneous due to to cancer development and progression [89][182].
This heterogeneity is observed at multiple scales, from sub-cellular to cellular to the tissue
scale [227], and can result in cell competition. Cell competition can act as a quality control
mechanism in tissue development or as a defence against precancerous cells, and harness-
ing cell competition has been suggested as a possible approach to enhance both cell-based
cancer and regenerative therapies [184]. Therefore, gaining a greater understanding of the
mechanisms underlying cell competition is very desirable. In mathematical models of cell
competition the classical hypothesis is that cells compete due to differences in their intrinsic
proliferation rates. However, different mechanisms, such as mechanical cell competition, may
play a role [T25]. We will explore mechanical cell competition.

In the emerging field of mechanical cell competition, winner cells compress neighbour-
ing cells promoting tissue crowding and regions of higher density, which leads to cell death
[29][129][241], while cell proliferation occurs in regions of lower density [82]. In this work, we
focus on mechanical cell competition arising from the coupling of a cell-based model of ep-
ithelial tissue mechanics with cell-length-dependent proliferation and death mechanisms. We
consider mechanical forces to be driven by cell stiffness which is important for cancer pro-
gression [T93], cancer detection [182], morphogenesis [66], and wound healing [61]. A grand
challenge in cell biology is to understand how tissue-level outcomes are related to cell-based
mechanisms, especially when experiments are performed by focusing on a single scale, and
many cellular processes occur over multiple overlapping timescales [38][248]. Therefore, we
apply mathematical modelling with in silico simulations to develop a framework to quantitatively
connect cell-level mechanisms with tissue-level outcomes.

Many mathematical modelling frameworks, including both discrete models and continuum
models, have been used to study cell migration and cell proliferation. In discrete models in-
dividual cell properties and inter-cellular interactions can be prescribed [175}[179]. However,
discrete models often lack macroscopic intuition and can be computationally intensive, espe-
cially with proliferation and death included, which are commonly stochastic and require many
realisations to understand the average behaviour. Continuum models commonly include pro-
liferation and death through source/sink terms and may require constitutive equations to close

the system [14][21}[78][129][144] [154]}[189}[202]. In general, continuum models do not make

the underlying cell-level processes clear [75]. However, continuum models can be less com-
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putationally expensive than discrete models and can be analysed with well-established math-

ematical techniques such as stability analysis [T7], phase plane analysis and perturbation

techniques [B8|[123}[159].

We are most interested starting with discrete descriptions of individual cell dynamics and

properties and then deriving corresponding continuum models [27}[68}[147}[174][181] [235][253]

because this allows us to switch between the two spatial scales and take advantage of both.

Further, this approach is very insightful as it can be used to demonstrate conditions when
continuum models are valid and when they are not valid. Having a continuum model which
is more computationally efficient to solve than the discrete model, and which well-established
mathematical techniques can be applied to, is only beneficial if the continuum model accu-
rately represents the underlying discrete behaviour. In this work, we start with the model of
mechanical relaxation in heterogeneous epithelial tissues from Murphy et al. (2019) (Chapter
[157]) and now incorporate cell-length-dependent proliferation and death mechanisms. This
framework allows us to explore mechanical cell competition, which was not previously possible
when considering only homogeneous populations [T9}[T64H167] or two populations without cell
death [T36].

This work is structured as follows. In Section we present a new discrete mechanical
model that includes cell-length-dependent proliferation and death mechanisms. We then derive
the corresponding novel continuum model that takes the form of a system of coupled nonlinear
partial differential equations with both hyperbolic and parabolic properties. In Section [3.4.1}
we explore our novel model by considering the evolution of a homogeneous tissue where
cells are undergoing both proliferation and death. In Section[3.4.2] we explore mechanical cell
competition in the context of cancer invasion by considering a heterogeneous tissue composed
of both cancerous and normal cells that compete for space. Using the model we explore
whether cancer cells will eventually replace all of the healthy cells or can the cancer cells
coexist with the healthy cells? In Section|3.4.3] we demonstrate the importance of the discrete

to continuum approach.
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3.3 Model formulation

In this section, we focus on how we stochastically implement cell proliferation and death for
heterogeneous cell populations within the discrete mechanical framework and the derivation of

the continuum description.

3.3.1 Discrete model

We start by describing the mechanical model and then include proliferation and death. We
consider a one-dimensional cross-section of an epithelial tissue, and represent it as a one-
dimensional chain of cells, connected at cell boundaries, in a fixed domain of length L. The
cells experience cell-cell interaction forces at their cell boundaries, for example cell-cell adhe-
sion or compressive stresses [237]. For a system of NV cells, cell i has left and right cell
boundaries at positions 7" (¢), 21, (¢), respectively. Fixed boundary conditions at = 0 and
x = L are imposed z{'(t) = 0 and =} ,(¢t) = L. To allow for heterogeneous tissues, each
cell 4, which can be thought of here as a mechanical spring, is prescribed with intrinsic cell
properties including a cell stiffness, kY, and resting cell length, « (Figure [3.1p). We assume
cell motion occurs in a viscous environment such that cell boundaries experience a drag force
with mobility coefficient n > 0 (Chapter [ [67}[147}[157]). In the overdamped regime, where

inertia effects are neglected, the evolution of cell boundary i in a system of N cells is

daV (1)

)

d¢

= fNaN ) - A @), i=2,...,N, (3.3.1)

where f{(1;(t)) is the force exerted on cell i —1 by cell i (Chapter[2} [157]). When ¥ (;(t)) > 0
cell i contracts and pulls cell i — 1. When f¥(I;(t)) < 0 cell i extends and pushes cell i — 1.
This cell-cell interaction force law may be given by, for example, a cubic, Hertz, Lennard-Jones,
or Johnson-Kendall-Roberts law [19][136}[165]. However, for simplicity, we choose a Hookean

force law,

SR ®) = kY [ @) - ol (8:32)

where cell i has length I (¢) = 2%, (t) — ¥ (¢) > 0.

We include cell proliferation stochastically, by considering that cell ¢ proliferates with prob-
ability P(1¥(¢))dt in the small time interval [¢, ¢ + dt), that depends on the current cell length,
IV (t), and proliferation mechanism P(-) . When cell ¢ proliferates we increase the num-

ber of cells by one by introducing a new cell boundary, z¥ 1!, at the midpoint of the original cell,
+1
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Figure 3.1: Discrete model schematic for a heterogeneous epithelial tissue with cell proliferation and
death. Cell i in a system of IV cells has left and right cell boundaries =¥ (t), z1% , (t), with z¥ (t) < 2, (),
respectively, and is prescribed with a cell stiffness k¥ > 0, and a resting cell length a® > 0. (a) Cell
proliferation. Cell i, coloured green, is selected to proliferate at time ¢. At time ¢ + d¢, the cell has
proliferated with a new cell boundary introduced at the midpoint of the original cell. Cell properties of
the daughter cell are prescribed from the parent cell. (b) Cell death. Cell i, coloured red, is selected to
die at time t. At time ¢ + dt, the cell is removed and the cell boundaries of cell 7 at time have coalesced
at midpoint of the original cell. For both proliferation and death cells are re-indexed at time ¢ + d¢. (c)
Special case with two adjacent tissues. The left tissue (tissue 1) is coloured red and the right tissue
(tissue 2) is coloured blue. The interface position between the left and right tissues is « = s(t). Each cell
in tissue i has cell stiffness K; and resting cell length A;. Proliferation and death rates remain dependent
on the length of each cell. This could also represent a single tissue with internal heterogeneity.
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Table 3.1: Proliferation and death mechanisms written in terms of cell length, ¥, proliferation parame-
ter, 8, and death parameters, v, 1.

Constant Linear Logistic
PQY) B BIY B
a—1), o<y <i
D(lfv) v ’Y( d i ) ) = 1N7 d lN
0, la <1; l;

Figure 3.2: Proliferation and death mechanisms considered in this work. Proliferation rates, P(I)
(dashed), and death rates, D(IV) (solid), shown as a function of cell length, V. Parameters used in this
work: (a) 3 = 0.01,y = 0.01, (b) 8 = 0.07, = 0.35,15 = 0.3, (c) 8 = 0.01, v = 0.0025.

it = (2N + xX,)/2, and relabel indices accordingly (Figure ). Daughter cells take the
same intrinsic cell properties as the parent cell. Cell death is included similarly to cell prolifera-

tion with a cell-length-dependent death mechanism, D(IY (¢)). In a system of N +1 cells, when
N+1

%

N+1
i+1

two cell boundaries are set to instantly coalesce at the midpoint of the dying cell (Figure [3.1b).

cell ¢ dies, with cell boundaries x and z the number of cells is reduced by one. The
Cell death at the tissue boundaries needs to be considered separately (Supplementary Mate-
rial SM1.2). In this work, we consider constant, linear, and logistic models of proliferation and
death (Table Figure [3.2). We solve discrete Equations (3.3.) together with a stochastic

implementation of proliferation and death numerically (Supplementary Material SM2.1).
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3.3.2 Derivation of continuum model

To understand the mean behaviour of the discrete model we must average over many iden-
tically prepared stochastic realisations. However, this can be computationally intensive, es-
pecially for large N. The corresponding continuum model, which we first present and then
derive, represents the average behaviour and unlike the discrete model the computational time

required to solve the continuum model is independent of N.

The continuum model for the evolution of the cell density, ¢(z, t), in terms of the continuous
cell-cell interaction force, f(x,t), proliferation rate, P(1/q(z,t)), and death rate, D(1/q(z,t)), is
the conservation of mass equation

0q(x,t) 10%f(x,t) 1 1
o = Ty o2 *W’“P(q@,t))‘Q(““"’”D<q<x,t>)’

mechanical relaxation proliferation death

(3.3.3)

where the continuous cell-cell interaction force which corresponds to Equation (3.3.2) is given
by

F,t) = k@, 1) <q (; 5 a(x,t)) , (3.3.4)

with cell stiffness, k(z, t), and the resting cell length, a(z, t), also being described by continuous
fields. From Equation (3.3.3), we know that the cell density flux, j(x,t) = q(z, t)u(x,t), is equal
to the spatial gradient of the cell-cell interaction force, (1/1)0f/0x. Therefore, the cell velocity,

u(z, t), is related to the cell density and gradient of the cell-cell interaction force through

1 0f(x,t)
nq(z,t) Ox

u(x,t) = . (3.3.5)

Note that Equation (3.3.5) corresponds to the discrete linear momentum equation in Equation
(3.3.2). Intrinsic mechanical cell properties are constant for each cell and transported by the
motion of cells. The proliferation and death functions, P(-) and D(-), respectively, (Table [3.1)
are evaluated at 1/¢(x,t). Depending on the choice of proliferation and death mechanisms we
may have additional intrinsic cellular properties, 5(x,t),v(z,t), and l4(x, t). All intrinsic cellular

properties evolve according to the following transport equation,

= 07 X = k? a, 5777 ld7 (336)

where u(z,t) is the cell velocity. The left hand side of Equation (3.3.6) corresponds to the
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material derivative, expressing the fact that there is no change in cellular properties along cell
trajectories. We solve the system of Equations (3.3.3)-(3.3.6) together with initial conditions

and boundary conditions numerically (Supplementary Material SM2.2).

We now systematically derive Equation (3.3.3). We take care to explicitly state and make
clear all approximations made in this derivation. We incorporate proliferation and then death
into the modelling framework, under the assumption that the two processes are independent.
The previously derived mechanical relaxation term and transport of cellular property equations
are only briefly discussed here, please refer to Murphy et al. (2019) (Chapter [2 [157])
for full details. For clarity, the derivation is shown for one spring per cell. However, this analysis
can be extended to m > 1 springs per cell which, for sufficiently small N, is a more appropriate
method to define the continuous field functions (Chapter [2, [157], Supplementary Material
SM1.3).

Proliferation

As cell proliferation is included stochastically (Sections[5.3.1] SM2.1), we consider an infinites-
imal time interval [t, ¢ + d¢) and condition on the possible proliferation events that could occur
and influence the position of cell boundary i in a system of N cells. Choosing dt sufficiently
small so that at most one proliferation event can occur in [t, t+dt), there are four possibilities: i)
there is no proliferation, in which case the cell boundary position =¥ only changes by mechan-
ical relaxation; ii) there is proliferation to the right of cell ¢ — 1; iii) there is proliferation to the left
of cell i — 1; and iv) cell i — 1 proliferates. This leads to the following infinitesimal evolution law

for the position of cell boundary =¥, accounting for cell relabelling when a new cell is added:

N (t+dt) = -va(t) + (j; AR AN AR (AR }] x 1 {no proliferation}

+ }vi»“(t) L () - () }}

x 1 {proliferation right of cell i — 1}

e+ S () - % (23} (3:37)

x 1 {proliferation left of cell i — 1}

OO g () (1))

x 1 {proliferation of cell i — 1} .
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Each term in square brackets is the resulting force from neighbouring cells due to mechanical
relaxation, given by Equations (3.3.1), for each potential event. In addition, we include Boolean

random variables expressed as indicator functions, 1 {-}, defined as

1, if eventoccursin [t,t + dt),
1{event} = (3.3.8)

0, otherwise,

whose expectations in the context of Equation (3.3.7) can be interpreted as proliferation prob-

abilities. For a system of N cells, where dt is sufficiently small, these proliferation probabilities

are given by

N
P (no proliferation in [t,t +dt)) =1 — dt ZP (1, (3.3.9a)

j=1

N

PP (proliferation to the right of cell i — 1in [t,¢ + dt)) = dt Z P (1Y), (3.3.9b)
PP (proliferation to the left of cell i — 1in [t,¢ + dt)) = dt Z P (1), (3.3.9¢)
P (proliferation of cell i — 1in [t, ¢ + dt)) = dt P (IY,). (3.3.9d)

Taking a statistical expectation, denoted (-), of Equation (3.3.7), <xZN(t)> now represents the ex-
pected position of cell boundary ¢ at time ¢ in a system of IV cells. We use the proliferation prob-
abilities with the following simplifying assumptions: i) (z}¥ (¢) 1 {event}) = (2 (t)) (1 {event}),
namely independence of the position of the cell boundary in space and proliferation propen-
sity, and a mean-field approximation as proliferation propensities depend on cell length; ii)
(fi(l¥ (1)) 1{event}) = (fi(iN(t))) (1 {event}), namely independence of the force and the
propensity to proliferate, and a mean-field approximation as force depends on cell length;
iii) a statistical mean-field approximation for force, (f;Y(1})) = f ((l%), and proliferation

propensities, <P(l§V)> =P (<Z§V>>. For simplicity we now drop the () notation. Then,

N (t+ dt) — 2N (t)

LN N N (N
= L) = £ )

dt
N
—al ()P ) ) Z (liy ’1) (3:3.10)
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We also assume: iv) the total propensity to proliferate is not significantly changed due to single
a proliferation event, > 7' P (lj.V*) dt=yN P (ljv) dt + O(dt?, N~1); v) a single prolifera-
tion event does not significantly alter the position of a cell boundary, = ~*(¢) = = (t) + O(dt)
(Figure[3.). As we will show, assumptions iv) and v) are good approximations for large N and
allow us to combine summations. Then, assuming vi) (z(¢)) is a continuous function of time,
we rearrange and take the limit d¢ — 0. For the proliferation terms we replace the cell length
with the discrete cell density ¢V = 1/I¥ to obtain
dzN¥ 1

T; - RGN AR (ARY]

1 i—2 1 1 1 (3.3.11)
(i) 2 () o ()

Equation (3.3.11) is only valid for the time interval [¢t,¢ + dt) under the assumptions iv) and v)

above.

Thus far, we have extended the discrete model with mechanical relaxation to include the
effects of cell proliferation. However, the statistically averaged model still retains information
about discrete cell entities. We thus average over space to define a continuum cell density.
Following Murphy et al. (2019) (Chapter [g [157]), we introduce the microscopic density of

cells,

G(z,t) = Z § (z—alN(t)), (3.3.12)

where § is the Dirac delta function (Evans and Morriss 2008, Lighthill 1958). We define a
local spatial average over a length scale dx, denoted (-)s., such that a; < bz < L, which is
sufficiently large to capture local heterogeneities for cellular properties that are constant during
cell motion, including k& and a, but sufficiently small to define continuous properties across L.

The continuous cell density function, ¢(z, t), is thus defined as

40

— (5 — 5 . 3.3.13
a(z,t) = (4(@, )se = 55— - q(y,t) dy ( )
Differentiating Equation (3.3.13) with respect to time gives
0q(z,t) 0 /& N dzN
== (> b(z—a] i 3.14
ot z <Z,:16(x (1) g, n (3.3.14)

where we use properties of the Dirac delta distribution (Evans and Morriss 2008, Lighthill 1958,
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Supplementary Material Equations S.15-S.17) and interchange the derivative with the spatial
average as dx is small. Consistent with assumptions iv)-v) above, the sum over the microscopic
densities can be considered to be fixed over N cells in Equation (3.3.74) within the small time

interval [t,t + dt).

On the right hand side of Equation (8.3.11), the first two terms involving ¥ and f}, cor-
respond to a mechanical contribution. This contribution is unchanged compared to Murphy
et al. (2019) (Chapter [2 [157]) and, when substituted into Equation (3.3.14), it gives rise to
the mechanical relaxation term on the right-hand side of continuum model, Equation (3.3.3)
(Supplementary Material SM1.4). We now focus only on the contribution due to proliferation
determined by substituting the proliferation terms of Equation into Equation (3.3.14),

giving a contribution which we denote dq(x, t)/0t|p,

Zéx—m LA p () alp (o (3.3.15)
P 89: qZ () = g (t) 2° \ ¥, 5 . (3.3.

Now, assuming vii) that the spatial average interval is sufficiently far from the tissue boundary,

dq(z,
8t

i.e. i > 1, we make the following approximation:

=2 1 1
;P(qjy>+2 (ql 1) ;P< ) (3.3.16)

To switch the dependence on the cell index to cell position, we multiply each term indexed by
J in the sum on the right hand side of Equation (3.3.16) by 1 = [;¢;. Then, relating the discrete

cell density to the continuous density through ¢ = q(z} (¢),t), gives

i—1
S q@(8), P <m) L. (3.3.17)
j )

We discretise the spatial domain x; < x < ;-1 with a uniform mesh with nodes ys, s
1,2,...,5,where y; = z1,ys = ;—1, and ys —y,—1 = Ay < [;. Then, evaluating the continuous

density at each node position, y5, we interpret Equation (3.3.17) as the following Riemann sum

gQ(ys,t)P <q(y1t)) Ay = /ON q(y,t) P (q(; t)> dy, (3.3.18)

where the integral on the right hand side is obtained by taking the limit Ay — 0. Substituting
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Equation (3.3.18) into Equation (3.3.15) gives

_ 90 - N B = 1
Rt <;5(:c ;' (1)) (q&) [/0 q(y,t)P<q(y’t>> dy]>6$. (3.3.19)

Calculating the spatial average, which only includes contributions from within the spatial aver-

dq(x,1)
ot

age interval due to the Dirac delta functions, gives

P:;; ((%)ii(&) [/Ozu q(y’t)P<q(y1,t)> dy]), (3.3.20)

r=1

Oq(w,t)
ot

where the index r labels the n cell boundaries contained within the spatial average interval
(x — dx,2 + o). Since a; < o < L and n >> 1 we have ¢ = q(zN(t),t) = q(x,t) for all r,
which is now independent of ». Similarly, xﬁV ~ ¢ for all r, where z is the centre of the spatial

average interval. This gives

= % <(2§x) Cﬂiﬁ/oxq(y,t)P (q(ylt)> dy) . (3.3.21)

As n/(20x) = q(z,t) in this spatial average interval, Equation (3.3.21) simplifies to

dq(x,t)
ot

Oq(x,t)
ot

=q(x,t)P< . > (3.3.22)

P q(z,t)

At this point, we see that all explicit references to the total number of cells, N(¢), vanish.
This allows the validity of the derivation, initially restricted to the time interval [¢,t + dt), to be
extended to arbitrary times. As N(t) = fOL q(z,t) dx, the change in the total cell number with
time due to proliferation is accounted for through the source term written in Equation (3.3.22).
We also stated assumption vii) that held true when sufficiently far from the tissue boundary but
we find that this works at the boundary also (Sections [3.4.1] [3.4.2). Equation shows
proliferation arises as a single source term consistent with usual continuum-based formulations
of proliferation whereas in Equation (85) of Baker et al. (2019) proliferation arises as this

term with an additional contribution.
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Death

The derivation of the cell death sink term follows similarly to that of the cell proliferation source

term. We again consider an infinitesimally small time interval [¢,¢ + dt), so that at most one

cell death event can occur in [t,t + dt), and condition on cell death events to understand all

possible events that occur and influence cell boundary i at ¢ 4+ d¢. This gives

2Nt +dt) = { { YY) = BN, Y 1)}] % 1 {no death}
+ vaﬂ(t) n (3775 {fiN+1 (ZZJ-VH) _ fi]X—ls-l (ZzNJf1>}
x 1 {death right of cell i}
s [t + S {a () - 1 (i)}

x 1 {death left of cell i}

[N (t) + RO

x 1 {death of cell i} .

The cell death probabilities for Equation (3.3.23) for a system of IV cells are given by

N
P (no death in [t,t +dt)) =1—dt » D (1)),
j=1

N
P (death to the right of cell i in [t,t +dt)) =dt > D (1),
P (death to the left of cell i in [t,t+dt)) =dt > D (1}Y),
PP (death of cell i in [t,¢ +dt)) = dt D (1Y) .

Proceeding similarly to the proliferation derivation, we obtain

z (t+dt) —a(t)

dt [fl ( ) fz (’L 1)}
N N+1

DY)+ ) > D (1)
g=1 j=i+l

i—1 N+1(t) + :L,N+1

+af ' ()Y D (zj”l) + (‘T — (t)> D (l{v“) +O(dt).

J=1

PO e () - e ()

(8.3.23)

(3.3.24a)

(3.3.24D)

(3.3.24c)

(3.3.24d)

(3.3.25)
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Then, following the same approach as the proliferation derivation, we arrive at the sink term in
Equation (3.3.3) for cell death, —q(z,t)D(1/q(x,t)).

Cell properties

Each cell is prescribed with intrinsic mechanical, proliferation, and death properties which are
taken to be constant for each cell throughout the simulation. For mechanical cell properties,
which include cell stiffness and resting cell length, we have the relationships x(z (t),t) = x;
for x = k,a. Similar relationships can be defined for the proliferation and death cell proper-

ties, 3,,14. Differentiating these equations with respect to time we obtain Equations (3.3.6)

(Chapter 2] [157]).



CHAPTER 3. MECHANICAL CELL COMPETITION 84

3.4 Numerical results

In this section, we first explore the evolution of a homogeneous tissue with different proliferation
and death mechanisms and then explore mechanical cell competition for a heterogeneous
tissue. To conclude we demonstrate the importance of the discrete to continuum approach
through a series of problems where we compare the averaged discrete data with solutions of

the corresponding continuum equations.

3.4.1 A homogeneous tissue

The simplest case to consider first is a homogeneous tissue composed of a population of
identical cells. We explore three different proliferation and death mechanisms: constant, linear,
and logistic (Table Figure [3.2). For each mechanism we explore proliferation only, death
only, and proliferation with death. We choose cell proliferation and death parameters (Figure
[3:2) so that we can compare results fairly. We first choose the parameters for the proliferation
mechanism so that, in the absence of cell death, a tissue with N(0) = 40 evolves to have, on
average, N (400) = 100 (Figures[3.3(m),[3.4fm), S4(m)). Parameters for the death mechanisms
were then subsequently chosen so that when proliferation and death are both included the total
cell number stabilises at 40 cells for ¢ > 0, which allows the standard deviations of N(¢) to be
compared fairly (Figures [3.3|n), [3.4(n), S4(n).

In all simulations we set L = 10 and n = 1, use a Gaussian initial density centred at x = L /2
with variance three and scaled to have N (0) = 40. We set k = 10, so that mechanical relaxation
is fast in comparison to the proliferation and death [T9]. For individual realisations this results in
uniform densities except for short-time transient behaviour following a cell proliferation or death
event (Figures [3.3p-c, [3.4p-c, S4a-c). Since epithelial cells in a tissue are in tension [228], we
set a = 0 for simplicity. Setting a > 0 gives qualitatively similar results as long as cells remain
in tension throughout the simulation.

For individual discrete realisations, cell proliferation causes a localised force imbalance fol-
lowed by fast mechanical relaxation towards mechanical equilibrium and an overall increase in
density (Figures [3.3p,[3.4p,S5a). Similarly, cell death results in a decrease in density followed
by fast mechanical relaxation and an overall decrease in density (Figures [8.3p, [3.4p, S5b).
With proliferation and death, cell boundaries are repeatedly introduced and removed, and the
overall density remains, on average, constant (Figures 3.3, [3.4c, S5c).

We observe excellent agreement when we compare the mean of many identically prepared

discrete realisations and the corresponding solutions of the continuum model for both density



CHAPTER 3. MECHANICAL CELL COMPETITION 85

Figure 3.3: Homogeneous population with constant proliferation and death mechanisms. Proliferation
only, death only, and proliferation with death shown in the left, middle and right columns, respectively.
(a)-(c) Single realisations of cell boundary characteristics for 0 < ¢ < 100. (d)-(f), (9)-(i), (j)-() Density
shapshots at times ¢ = 0,25, 75, respectively. (m)-(o) Total cell number. The average and standard
deviation (blue error bars) of 2000 discrete simulations are compared to solution of continuum model
(green).
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Figure 3.4: Homogeneous population with linear proliferation and death mechanisms. Proliferation
only, death only, and proliferation with death shown in the left, middle and right columns, respectively.
(a)-(c) Single realisations of cell boundary characteristics for 0 < ¢ < 100. (d)-(f), (9)-(i), (j)-() Density
snapshots at times ¢ = 0, 25,75, respectively. (m)-(o) Total cell number. The average and standard
deviation (blue error bars) of 2000 discrete simulations are compared to solution of continuum model
(green).
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shapshots and total cell number (Figures [3.3d-o, [3.40d-0, S5d-0).

We note that the continuum model does not always provide a good match with an indi-
vidual realization of the discrete model. For example, for constant proliferation and constant
death with equal rates, every discrete realization will eventually become extinct (Supplemen-
tary Material SM3.1) as proliferation and death are independent of mechanical relaxation. This
is expected as the total cell number is a linear birth-death process (Ross 1996) where the net
proliferation rate is always equal to zero (Figure S4). As a consequence, the standard deviation
of the total cell number increases with time (Figures|[3.3p). When cell proliferation and death
are cell-length-dependent there is closer agreement between the continuum model and single
realisations. The net proliferation rate adjusts, due to changes in the number of cells and their
lengths, to stabilise the population at its equilibrium value (Figure S4). Therefore extinction

is extremely unlikely and the standard deviation of averaged discrete realisations is smaller

(Figures [3.4p, S50).
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3.4.2 Mechanical cell competition

How tissues compete with each other for space is of great interest with many open biological
questions being pursued in the experimental cell biology literature [29}[129][232]. For example,
in cancer invasion in an epithelial tissue a key question is whether cancer cells will eventually
replace the entire healthy tissue or can the cancer cells coexist with the healthy cells? We
consider this question by simulating a heterogeneous tissue composed of two populations,
cancer cells adjacent to healthy cells (Figure [3.1k). Biologically, it is a hallmark of cancer cells
that they are more proliferative and resistant to death than healthy cells [B0]. In existing models
the standard procedure would be to include these hallmarks as modelling assumptions and not
consider the role of mechanical relaxation. However, we will now show this assumption is not
necessary. We find that mechanical differences are sufficient for these hallmarks to arise and
for cancer cells to outcompete healthy cells. We prescribe cancer and healthy cells the same
proliferation and death mechanisms and parameters. We ask a further key question, how
does mechanical relaxation alone compare to mechanical relaxation with proliferation, and to
mechanical relaxation with proliferation and death?

In all scenarios, the left tissue (tissue 1) is coloured red to represent cancer cells and the
right tissue (tissue 2) is coloured blue to represent healthy cells (Figure [3.1¢). Each tissue
starts with 20 cells. We assume cancer cells have lower stiffness than healthy cells (Lekka
2016) so we set cells in tissue 1 and 2 with cell stiffnesses K; = 10 and Ky = 20, respectively.
Again, for simplicity and to represent that cells in an epithelial tissue are understood to be in
tension [228], we set a = 0.

With only mechanical relaxation the interface position, s(t), relaxes to the long-time inter-
face position, S = lim;, s(t) = 6.66 (Chapter [2 [157]). In this scenario, the cancer and
healthy cells coexist. However, the assumption of mechanical relaxation alone is only realistic
over a short timescale where proliferation and death are negligible. When we include prolifera-
tion and death below, we use this long-time solution as the initial condition. As the mechanical
relaxation rate is faster than the proliferation and death rates, using this initial condition only
neglects initial short-time transient behaviour and does not significantly impact the long-time
solution.

For mechanical relaxation with proliferation (Figure [3.5), we prescribe the linear prolifera-
tion mechanism for both the cancer and healthy cells with the same parameters. As cancer
cells have lower cell stiffness than healthy cells, the cancer cells are always longer than the
healthy cells (Supplementary Material SM4.1) except for the short transients after proliferation

events where the cells have yet to mechanically relax. Initially, the cancer cells, with length 1/3,
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Figure 3.5: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation only. (a),(b) A single realization of cell boundary characteristics for
0 <t < 200. Colouring in (a),(b) represents cell density and cell stiffness, respectively. (c)-(d), (e)-(f),
(g9)-(h) Density and cell stiffness snapshots, left and right, respectively, at times ¢ = 0, 25, 200, respec-
tively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan) for the
discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows the edge of the
domain. The average and standard deviation (blue error bar) of 2000 discrete simulations are compared
to the solution of the continuum model (green).
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are double the length of healthy cells. Referring to Figure we see that the difference in
cell lengths corresponds to cancer cells being more likely to proliferate than the healthy cells.
Therefore, the cancer cells proliferate more than the healthy cells not because they were set to
have advantageous intrinsic proliferation or death properties through a modelling assumption,
but simply due to the coupling of mechanical relaxation with the length-dependent prolifera-
tion mechanism. With each proliferation event all cells become smaller, with the healthy cells
remaining smaller than the cancer cells. Here we have coexistence but, as there is always a
non-zero probability of proliferation and no cell death, all cells will eventually become unrealis-
tically small and this happens first for healthy cells. In the absence of cell death, changing the
proliferation mechanism will still result in coexistence.

For mechanical relaxation with proliferation and death (Figure BA.13) a cell is more likely to
die when it is smaller (Figure 3.2p). As we have observed for mechanical relaxation with pro-
liferation, the healthy cells are smaller first, due to their higher relative stiffness, and therefore
are more likely to die first. Once all of the healthy cells have died we have a homogeneous
population of cancerous cells (Section[3.4.1). Importantly, we find that the cancerous cells, de-
spite having identical proliferation and death mechanisms, are the winner cells of mechanical
cell competition; they outcompete the healthy cells and take over the domain purely as a result
of having lower cell stiffness. These results are robust to changes to the initial ratio of healthy
cells to cancer cells (Figures S8, S9) and to the ratio of stiffness between healthy and cancer
cells, provided cancer cells have lower stiffness than healthy cells (Figure S10).

Similar results regarding cancer invasion are found when considering the logistic mecha-
nisms with both proliferation and death (Supplementary Material SM4.3). In contrast, for the
constant proliferation and death mechanisms, where the proliferation and death mechanisms
are both independent of the cell length and therefore independent of mechanical relaxation, to
observe cancer cells invading the full domain we would have to prescribe the cancer cells to

be more proliferative and resistant to death than the healthy cells.
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Figure 3.6: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. First row shows a single realization of cell boundary charac-
teristics for 0 < ¢ < 200. Colouring in (a),(b) represent cell density and cell stiffness, respectively. (c)-(d),
(e)-(f), (9)-(h) Density and cell stiffness snapshots, left and right, respectively, at times ¢t = 0, 25, 50, re-
spectively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan) for the
discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows the edge of the
domain. The average and standard deviation (blue error bar) of 2000 discrete simulations are compared
to the solution of the continuum model (green).
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3.4.3 Importance of the discrete to continuum approach

The discrete to continuum approach is important as it provides a principled means to determine
how cell-level properties scale to the macroscale. Further, the approach provides conditions

for whether or not the continuum model is beneficial, as we now explore.

In previous sections we choose proliferation and death mechanisms with parameters which
lead to a good match between the appropriately averaged data from repeated discrete realisa-
tions and the solution of the corresponding continuum model. In Section(3.4.1] we demonstrate
that individual realisations of the discrete model can go extinct while the continuum model does
not. This provides a first indication that the continuum model does not always capture all rele-
vant information from the underlying discrete model. We now demonstrate that if the approxi-
mations outlined in the derivation of the continuum model in Section[3.3.21are not satisfied then
the continuum approximation is not always satisfactory, and in such cases the discrete model

should be used.

As an illustrative example we consider a proliferation mechanism which varies rapidly with
cell length. For simplicity we consider the following piecewise cell-length-dependent prolifera-

tion mechanism

0, 0<li<liy,
P@,) = (3.4.1)

0.0, I > 1,

where we set the proliferation threshold to be [, = 0.2. As before, N(0) = 40 but we now
choose a constant initial density condition so I; = 0.25 for each cell. Therefore, in the discrete
model, each cell is initially able to proliferate. When the first cell proliferates it divides into
two equally sized daughter cells with lengths [; = 0.125. With fast mechanical relaxation, i.e.
sufficiently large k, all 41 cells relax to equal size, I; = 0.244, before the next proliferation
event. This repeats until ; < [, for each cell i when proliferation stops (Figure [8.74d,f,h). This
results in a tissue with 50 cells (Figure [3.7],j), which is consistent with the continuum model
where the density increases at the same rate everywhere in the tissue until reaching N =
50 (Figure [3.7], S6b,d,f). As the initial density condition is uniform the continuum solution
holds true for any k. However, the behaviour of the discrete model for very slow mechanical
relaxation, i.e. sufficiently small &, is very different. Proliferation occurs faster than mechanical
relaxation so each of the initial 40 cells can proliferate, resulting in 80 cells (Figure ,e,g,i,
S6a,c,e). It is clear that the continuum model does not accurately describe this problem and

so we conclude that the discrete model should be used in this case. Increasing & results in an
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improved agreement between the discrete and continuum models (Figure S7).

This example is important. The mismatch between the continuum and discrete results for
this case remains even if we consider similar problems with larger numbers of cells, so simply
increasing N (0) does not alleviate the issue. We do observe that increasing the mechanical
relaxation rate, by increasing k, does provide a better match. However, in this piecewise
proliferation mechanism example we require very high values of k, for example & = 1000, for a
good match. Results in previous sections with excellent agreement are generated using & = 10.
Revisiting the mechanical cell competition example and reducing to £ = 0.0001 still provides
a reasonable match (Figure S13). This is because the rates involved in the proliferation and
death mechanisms are smoother and slowly varying with respect to cell-length.

The results in Figure [3.7)may be surprising from the perspective of continuum mechanics.
A common approach in continuum mechanics is to start with conservation of mass
and linear momentum and invoke constitutive laws. To derive our model using this approach
one could start with the conservation of mass equation and then heuristically add source and

sink terms to represent proliferation and cell death to give

&cht’t) + a% (q(z,t)u(z,t)) = q(x, 1) P (q(;’tﬂ —q(z,t)D <q<;t)> : (3.4.2)

The continuous analogue of the discrete conservation of momentum Equation (3.3.1) could be

written by expanding the discrete cell-cell interaction force law with respect to cell-length in a

Taylor series expansion to obtain

1 9f(x,t)
q(z,t) Ox

nu(x,t) = (3.4.3)

Equations (3.4.2) and (3.4.3) agree with Equations (3.3.3)-(3.3.6) derived earlier using a sys-
tematic coarse-graining approach. However, in the common continuum mechanics approach

we would not have any opportunity to compare solutions of these continuum models with any
underlying discrete description. This simple approach does not give any explicit indication of
the underlying approximations inherent in the continuum model nor does it inform us when
the continuum model may be a poor representation of the biology (Figure [3.7). Especially in
biological contexts where cell numbers are large but local fluctuations can play an important
role, we prefer to adopt the approach of starting with a biologically motivated discrete model
and carefully derive the associated continuum limit, since this approach explicitly highlights the
underlying assumptions inherent in the continuum model and provides us with a way of testing

the accuracy of such assumptions.
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Figure 3.7: Homogeneous population with rapidly varying proliferation mechanisms. With slow me-
chanical relaxation, ¥ = 0.0001, and faster mechanical relaxation, ¥ = 1000, shown in left and right
columns, respectively. (a)-(b) Single realisations of cell boundary characteristics for 0 < ¢ < 100. (c)-
(h) Cell length distributions against proliferation mechanism for times ¢ = 0, 50, 100 where one discrete
realisation (blue) is compared against continuum model (green). (i)-(j) Total cell number where the av-
erage and standard deviation (blue error bars) of 2000 discrete simulations are compared to solution of
continuum model (green).
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3.5 Conclusion

In this work, we present a new one-dimensional cell-based model of heterogeneous epithelial
tissue mechanics that includes cell proliferation and death. The main focus is to determine
the corresponding continuum model which is a novel coupled system of nonlinear partial dif-
ferential equations. The cell density equation is a parabolic partial differential equation while
the cell property equations are hyperbolic partial differential equations. In deriving the con-
tinuum model, the discrete mechanisms and assumptions that underpin the continuum model
have been made explicit by presenting the details of the coarse-graining derivation. Assump-
tions that relate to mean-field approximations and statistical independence of quantities are
normally implicitly assumed in continuum models. By specifying the details of the derivation,
and all assumptions required, our work provides insight into situations when these assump-
tions hold, as well as giving insight into when these assumptions fail to hold, such as when
the number of cells, N(t), is not sufficiently large, when cell properties vary rapidly in space,
when mechanical relaxation is slow relative to rate of proliferation, or with proliferation and
death mechanisms which vary rapidly with respect to cell-length. Under these conditions we
recommend that the discrete description is more appropriate than the approximate contin-
uum description. Further, we stress the limitations of developing continuum models by simply
adding source and sink terms to an existing model without considering the underlying discrete
model in complex biological systems.

By coupling mechanics with proliferation and death we are able to explore biological sce-
narios that could not be described in previous modelling frameworks. Specifically we can focus
on mechanical cell competition driven by variations in cell stiffness and resting cell length. By
choosing mechanical relaxation rates sufficiently fast relative to proliferation rates we observe
good agreement between the average of many identically prepared stochastic realisations of
the discrete model and the corresponding solutions of the continuum model. The quality of
agreement holds even when our simulations only consider 40 cells and L = 10 which is an
extremely small number in comparison to the number of cells in an epithelial tissue. Further,
assuming one cell is approximately 10 um in length [68][73] then setting L = 10 corresponds to
a tissue length of approximately 0.4mm which is a biologically relevant length scale for appli-
cations such as wound healing. A continuum model is beneficial as we now have a tissue-level
understanding of the mechanisms encoded in the discrete model and the time to solve the con-
tinuum model is independent of N (t). The discrete model remains beneficial and can provide
additional information. For example, the average of many discrete realisations can match the

continuum model but every discrete realization could go extinct which is not observed in the



CHAPTER 3. MECHANICAL CELL COMPETITION 96

continuum model.

We explore mechanical cell competition applied to cancer invasion by considering cancer
cells adjacent to healthy cells which compete for space. Interestingly, when we only allow can-
cer cells and healthy cells to differ in their cell stiffnesses, as a result of mechanical coupling,
we observe that the cancer cells have more opportunities to proliferate and are less likely to
die than healthy cells. We can then identify the cancer cells, as a result of the property of lower
cell stiffness, as being the winner cells which invade the full domain. Cell stiffness and cell size
may therefore be important factors to include when interpreting proliferation and death rates in
experimental data. This analysis would not be possible using other existing models.

In all simulations we set a = 0 to model cells being in tension [228]. Setting a > 0
gives qualitatively similar results for homogeneous and heterogeneous populations as long
as cells remain in tension throughout the simulation. This modelling framework is well-suited
to be extended to cases where cells may also become compressed, for example in a tumour
spheroid [53]. The model is well-suited to also study other observations of melanoma tumour
spheroids such as subpopulations with differing proliferation rates located in different regions of
the tumour, cells switching between these subpopulations, and the role of oxygen and nutrient
concentrations [86][239].

Many interesting extensions to this work are possible. Mathematically, the extent to which
the continuum-limit holds with a free boundary is not yet clear (explored in Chaptersflandg). A
free boundary also allows us to consider tissue growth and shrinkage in mechanically less
constrained environments, such as in developmental biology. Further, explicitly incorporating
additional biological mechanisms that regulate cell size [107][256}[257] and the evolution of
intrinsic cell properties [89] would be both mathematically interesting and biologically relevant.
In addition, while some features of cell ageing are implicit in the model, for example initially after
a proliferation event daughter cells are less likely to proliferate than the parent cell with cell-
length-dependent proliferation mechanisms, it would be of interest to explicitly incorporate the
cell cycle and associated cell ageing processes such as growth in the resting cell length [T47].
The theoretical foundations presented here for building a discrete model and constructing the
continuum limit of that discrete model could be used to describe these additional mechanisms

in future analyses (see Chapters [4and [5] where we include free boundaries).
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3A.1 Model formulation

In Section 2.1 of the main manuscript, we present the discrete model with one spring per cell
and the derivation of the corresponding continuum model. Here, we present the discrete model
with m > 1 springs per cell, see Supplementary Material Section [3A.1.1] This is important to
define the field functions in the continuum model, in particular the mechanical relaxation term,
for sufficiently small N where the size of a cell is no longer small in comparison to the size
of the domain. Proliferation still occurs at a cellular level rather than at a spring level with m > 1
therefore we still require many cells, i.e. a; < dx < L. We also present: the special cases
we need to consider at the boundaries for cell death, see Supplementary Section BA.1.2]; the
derivation of continuum model for proliferation with m > 1 springs per cell, see Supplementary
Material Section[3A.1.3] and in Supplementary Material Section [3A.1.4] highlight key points for

the derivation of the mechanical relaxation term [157].

3A.1.1 Discrete model with m > 1 springs per cell

The model described in the main manuscript is presented by considering each cell to be rep-
resented by a single mechanical spring, m = 1, and tracking the evolution of cell boundaries.
We now replace each cell with m > 1 identical springs (Figure BA.Th) [157]. We have spring
boundaries at the cell boundaries as before but now we also have spring boundaries internal
to the cell. We now track the evolution of all spring boundaries. In a system of IV cells, cell

i has spring boundaries Y, = 1,...,m, where =Y = x},. The spring length is defined as

7,07

1N, = a, —a}, | > 0 andis related to cell length through I} ~ ml}Y, as m — oo, and with

N2 i,v—1

equality for all m as t — oco. The mobility coefficient for a cell, , and mechanical cell properties,

k; and a;, are related to mobility coefficient for a spring boundary, 7,, spring stiffness, £, and

vV

resting spring length, ¥, through the following scalings

1,07

_n N _ N N o_a 3A.1.1
M= — kil/_mki7 Q; = ——, ( )
m ’ ’ m
The spring boundaries, xf\’y evolve according to
da!N (t
My i (1) =N N ., i=2,...,N, v=1,2,....m,
de ’ ’ (3A.1.2)
Z{\L = kﬁ/ (ZZJYV aZ]'YV)

We consider proliferation to be a property of a cell rather than a property of springs within a

cell. Specifically, when spring v in cell i is chosen to proliferate we consider that the whole
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cell proliferates and introduce an additional m springs (Figure [3A.1b). Accordingly, we will
introduce scaled spring proliferation rates. As with m = 1, we introduce the new cell boundary
at the midpoint of original cell before proliferation. However, now we introduce m additional
springs. To do so we equally space 2m springs within the original cell. Similarly, for cell death
we now instantly coalesce the cell boundaries and all internal spring boundaries to the centre

of the dying cell. We have spring proliferation and death laws, P, and D,, respectively,

P (i) D).

(3A.1.3)

P (1) = Do) =

m m

The scalings are chosen such that the cell boundary velocities and proliferation/death rates are
maintained and are independent of m [[157].
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Figure 3A.1: (a) Schematic for the discrete model with m springs per cell. Heterogeneous population
with N cells in a fixed domain of length L. Cell i, with a blue border, is prescribed with cell stiffness kY
and resting cell length a?¥'. The length of cell i is IV = 2, —z¥. Spring v in cell i has spring boundaries
al,,xl, .. Each spring is prescribed with a spring stiffness £, = mk] and a resting spring length
al, = a}Y /m. Each spring has spring length )Y, = ¥, ., — z.¥,. The cell and spring boundaries are
shown as discs and hexagons, respectively. (b) Proliferation of cell ¢, with a green border, in a model
with m springs per cell. The original cell divides into two cells. An additional m equally spaced springs

are introduced. This schematic is presented for even m.
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3A.1.2 Death at boundaries

Cell death at a boundary is a special case of the discrete model which we present here. For
death of the first cell whose left boundary is at + = 0, the first cell is removed and the left
boundary of the second cell is set to = = 0 (Figure [3A.2R). Similarly, for the death of the last

cell whose right boundary is at = L, the final cell is removed and the right boundary of cell

N —1is setto z = L (Figure BA.2p).

Figure 3A.2: Model schematic for special cases of cell death of (a) first and (b) last cell.
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3A.1.3 Derivation of proliferation with m > 1 springs per cell

In Section 2.2 of the main manuscript, we present the derivation with one spring per cell, m = 1.
Here, for completeness, we rewrite the derivation with m springs per cell. The advantage of
m springs per cell is that we can more appropriately define the continuous field functions, in
particular the mechanical relaxation term for low cell numbers. New text relevant for m springs
per cell is shown in purple. Setting m = 1 in this new derivation recovers the results in the

main manuscript.

Starting from the discrete model described in Section 2.1 but now for m springs per cell
as described in Supplementary Material Section 1.1, we now derive the proliferation source
term in Equation (3). As cell proliferation is included stochastically, we consider an infinitesimal
time interval [t,¢ + dt) and condition on the possible proliferation events that could occur and
influence the position of spring boundary v in cell i in a system of N cells. We note that
proliferation is still considered a cell event rather than a spring event. Specifically, we say that
a cell proliferates once any spring in the cell has been chosen to proliferate; this is captured
through the scalings in Equation (3A.1.3).

Choosing dt sufficiently small so that at most one proliferation event can occur in [t, ¢ + dt)
there are five possibilities: i) either there is no proliferation, in which case the spring boundary
position z; %V only changes by mechanical relaxation; ii) there is proliferation to the right of cell
i; iii) there is proliferation to the left of cell i —1; iv) cell i — 1 proliferates; and v) cell i proliferates.

This leads to the following infinitesimal evolution law for the position of spring boundary v in
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cell i 2N, accounting for cell relabelling when a new cell is added:

i,

i, (t4dt) = [l‘z‘,uN(t) + (i; {£N GN) = fivaa™ (L) }] x 1 {no proliferation}
0+ SN ) = N ™)
x 1 {proliferation right of cell i}

+ _x,-_l,uNfl(t) + (71; (N G, N = fo Y (li_17V1N1>}:|

- x 1 {proliferation left of cell i — 1}

[ dt
N-1 at N1 [N N[N
+ _xi_l’(%Jr%)(t) + 1 {fil,(%;l) <li_1,(r§+v2+1)> fz—l,(EqLTl) <l7:—1,(*g+"21)> H

x 1 {proliferation of cell i — 1}

* :‘”’“’5?%1)(“ +5 {fwm“ (lﬁﬁm) ey <l£1}<"?)> H

x 1 {proliferation of cell i} .

(3A.1.4)

The derivation is shown for even m and odd v for simplicity (Figure[3A.1p). With other choices
of m and v we obtain slightly different terms for the proliferation of cell i — 1 and i. However,
these choices are not important to the following derivation. Each term in square brackets is
the resulting force from neighbouring cells due to mechanical relaxation, given by Equations
(BAI.2), for each potential event. In addition, we include Boolean variables expressed as

indicator functions, 1 {-}, defined as

1, ifeventoccursin [t,t+ dt),
1{event} = (3A.1.5)

0, otherwise,

whose expectations in the context of Equation (3A.1.4) can be interpreted as proliferation prob-

abilities. For a system of N cells with m springs per cell, where dt is sufficiently small, these
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proliferation probabilities are given by

N m
P (no proliferation in [t,t +dt)) =1 —dt ZZP,, (ljJ,N) ,  (3A.1.6a)
j=1lv=1
N m
P (proliferation to the right of cell i in [t,¢+dt)) =dt > > P, (1;,"),  (3A.1.6b)
j=i+1v=1
i—2 m
P (proliferation to the left of cell i — 1in [t,t +dt)) =dt > > P, (1;,"), (3A.1.6¢)
j=1v=1
IP (proliferation of cell i — 1 in [t,¢t + dt)) = dt Z P, (li_l,VN) , (3A.1.6d)
v=1
P (proliferation of cell i in [t,t + dt)) = dt ZPV (L:,,N), (3A.1.6e)
v=1

where using the proliferation rate scaling, from Equation (3A.1.3), Equations (3A.1.6) can be
written in terms of the cell proliferation rates,

N
P (no proliferation in [t,t +dt)) =1 —dt » P (I}), (3A.1.7a)
j=1
N
PP (proliferation to the right of cell i in [t, ¢ + dt)) = dt Z Py, (3A.1.7b)
j=i+1
1—2
P (proliferation to the left of cell i — 1in [t,t + dt)) = dt ZP (). (3A.1.7c)
j=1
PP (proliferation of cell i — 1 in [t,¢ +dt)) = dt P (1Y), (3A.1.7d)
PP (proliferation of cell i in [t,t +dt)) = dt P (i) . (3A.1.7e)

Taking a statistical expectation, denoted (-), of Equation , (z;,N (t)) now represents
the expected position of spring boundary v in cell 7 at time ¢ in a system of N cells. We use the
proliferation probabilities with the following simplifying assumptions: i) <x,;,l,N(t) 1 {event}> =
(i, (t)) (1 {event}), namely independence of the position of the cell boundary in space and
proliferation propensity, and a mean-field approximation as proliferation propensities depend
on spring length; i) (z;, N (t) N (1;,N)) = (2, V() (¥ (1Y), namely independence of
force and the propensity to proliferate, and a mean-field approximation as force depends on
spring length; iii) a statistical mean-field approximation for force, (¥ (1;,™)) = f~ ({1;,)),

and proliferation terms, (P(lj.v)> =P ((l%). For simplicity, we now drop the (-) notation.
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Then,

at
N N-1
e MO P ) + 20O 3 P (F) +2 OP (1) gane
=1 j=i+1
1—2
N1 N-1 N-1 N-1
+ a1, N () ;P (1) + sy (OP (1251) + 0 (ar).
We also have
7o (g () = 2, (1) [ffv(f;l)(t) - xi,vyl(t)] , (3A.1.9)

and we make assumption vii) that we are sulfficiently far from the tissue boundary such that the
term in square brackets of Equation (3A.1.9) is negligible in comparison to the first term in the
right hand side. This is consistent with Equation (16) in the derivation with m = 1. Similarly for

the term ="~ (34%)(15)- This gives

.%'Z',VN(t + dt) - .’E,;’VN(w

= ;l] [fi,l/N (li,l/N) - fi,l/—lN (li’y_lN)]

dt
N N—-1
O P @)+ 30 P(ET) 0P () At
j=1 j=i+
1—2
+oi, N )Y P 2 P () o)
ST P () o (05)

We also assume: iv) the total propensity to proliferate is not significantly changed due to
a single proliferation event, "Y' P (lN 1) dt = N, P (le) dt + O(dt?, ;); V) a single
proliferation event does not significantly alter the position of a cell boundary, xWN*I(t) =
z;,N (t) + O(dt). As we will show, assumptions iv) and v) are good approximations for large N

and allow us to combine summations to give

z;, V(4 dt) — 2, N (t)

= 717 [fi,yN (li,I/N) - fig/le (li’yle)]

dt
H i1 (3A.1.11)
—al ) S P | +al 0 [ S P Y| +o (N
Jj=1 j=1

Then, assuming vi) (z; " (¢)) is a continuous function of time, we rearrange and take the limit

dt — 0. For the proliferation terms we replace the cell length with the discrete cell density
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¢ = 1/1¥ to obtain

dxw,N
dt

=fi, N (li,uN) — fiva® (Zi,ule)

1 i—1 1 (3A.1.12)
-(7@) {Z%m)] |

Equation (3A.1.12) is only valid for the time interval [¢, ¢ 4+ d¢) under the assumptions iv) and v)

above.

Thus far, we have extended the discrete model with mechanical relaxation to include the
effects of cell proliferation and death. However, the statistically averaged model still retains
information about discrete cell entities. We thus average over space to define a continuum cell

density. Following Murphy et al. (2019) [157], we introduce the microscopic density of cells,

m

N
G(z,t) = %ZZ& (x — 2,V (1)), (3A.1.13)

i=1 v=1

where 6 is the Dirac delta function (Evans and Morriss 2008, Lighthill 1958). We define a local
spatial average over a length scale 6z, denoted ()55, such that ¢; , < a; < dx < L, which is
sufficiently large to capture local heterogeneities for cellular properties that are constant during
cell motion, including k& and a, but sufficiently small to define continuous properties across L.

The continuous cell density function, ¢(z, t), is thus defined as

r+0x
q(z,t) = (q(z,1))sz = 5 q(y,t) dy. (3A.1.14)

r—dx

We proceed by differentiating Equation (3A.1.14) with respect to time to obtain

) ity = () GATTO)

From Evans and Morriss (2008), the term inside the spatial average on the right hand side of



CHAPTER 3A. SUPPLEMENTARY MATERIAL 108

Equation (3A.1.15) can be written as

aA .. 8 N m
Q(at t) _ a (; 225 (LU — xi,I/N(t))> )

=1 v=1

dxzu
mzz dt 837@” xi,VN(t))v

dwz v
~Tm ZZ dt 8:): i ()

i=1v=1

9 (1 N m dSUiz/

(3A.1.16)

where we obtain the third line of Equation (3A.1.16) by making use of properties associated
with the Direct delta function (Evans and Morriss 2008, Lighthill 1958). Then substituting Equa-
tion (3A.1.16) into Equation (3A.1.15) gives

8q(x, t) 1 d.%l 1/ '
o <m 2; fﬂz,uN(t))> 5 (3A.1.17)

1=

where on the right hand side, as dx is small, we have interchanged the spatial average and the
derivative with respect to . We note that the final step using the assumption §z is small can be
shown more formally by explicitly treating the Dirac delta function as a generalised function and
using test functions (Lighthill 1958). Consistent with assumptions 4)-5) above, the sum over
the microscopic densities can be considered to be fixed over N cells in Equation (3A.1.17)

within the small time interval [¢, ¢ + dt).

On the right hand side of Equation (BA.1.12), the first two terms involving f correspond
to a mechanical contribution. This contribution is unchanged compared to Murphy et al.
(2019) [157] and, when substituted into Equation (BA.1.17), it gives rise to the mechanical
relaxation term on the right hand side of the continuum equation (3) (Supplementary Material
[BA.1.4). We now focus only on the contribution determined by substituting the proliferation
terms of Equation (3A.1.12) into Equation (8A.1.17), giving a contribution which we denote
dq(z,t)/0t|p,

8Q(93,75) 1 i—1 .
ot <mZ;le‘> — iy )M{;P<W>]>M (3A.1.18)

At this point in the derivation for m = 1 we make the assumption that we are sufficiently far
from the tissue boundary. We name this as assumption vii). For m > 1 we have already made

assumption vii) and this is not required again here. To switch the dependence on the cell index
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to cell position, we focus on the sum in square brackets on the right hand side of Equation
(3A.1.18). We multiply each term j by 1 = [;¢;. Then relating the discrete cell density to the

continuous density through ¢ = q(« (¢),t) gives

i—1
S @ (), 0P (W) L (3A.1.19)
j b

We discretise the spatial domain z; < x < z;_; with a uniform mesh with nodes s, s
1,2,...,5,where y; = z1,ys = x;—1, and ys—ys—1 = Ay < l;. Then, evaluating the continuous
density at each node position, ys, we interpret Equation (3A.1.19) as the following Riemann

sum

iq (s, 1) ( (yL )>Ay—/oxyq(y,t)P(q(y17t)> dy. (3A.1.20)

where the integral on the right hand side is obtained by taking the limit Ay — 0. Substituting

Equation (3A.1.20) into Equation (3A.1.18) gives

(RS () o i) )=

(3A.1.21)

dq(z, 1)
ot

Calculating the spatial average, which only includes contributions from within the spatial aver-

age interval due to the Dirac delta functions, gives

p:;; <(25$) Zn:i (qr 1) [/ Q(y’t)P<Q(y1,t)> dy])’ (8A.1.22)

rlz/l

Oq(w,t)
ot

where the index r labels the n cell boundaries contained within the spatial average interval
(z — dz,x + dx). Equation (3A.1.22) is now independent of m, which is to be expected as

proliferation is considered a cell event rather than a spring event. Simplifying gives

PZ(;Z ((%)i;(&) [/Ox q(y,t)P(q(;’t)> dyD. (3A.1.23)

Since a; < 8z < Landn > 1 we have ¢V = q(z(t),t) = q(x,t) for all r, which is independent

dq(z,t)
ot

of r. Similarly, z,, ~ « for all », where z is the centre of the spatial average interval. This gives

= a% ((22‘36) q(;t) /qu(y,t)P (q(ylt)> dy> . (3A.1.24)

dq(x,1)
ot
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As n/(20x) = q(z,t) in this spatial average interval, Equation (3A.1.24) simplifies to

0q(x,t)
ot

=q(x7t)P< ! ) (3A.1.25)

P q(z,t)

At this point, we see that all explicit references to the total number of cells, N(¢), vanish.
This allows the validity of the derivation, initially restricted to the time interval [¢,t + dt), to be
extended to arbitrary times. As N(t) = fOL q(z,t) dz, the change in the total cell number with
time due to proliferation is accounted for through the source term written in Equation (3A.1.25).
We also stated assumption vii) that held true when sulfficiently far from the tissue boundary but

we find that this works at the boundary also (Section 2).
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3A.1.4 Mechanical relaxation

We outline the key steps to derive the mechanical terms, with one spring per cell, and refer the
reader to Section 2 of Murphy et al. (2019) [157] for full details. We introduce field functions
for the force, f(z,t), cell stiffness, k(x,t), and resting cell length a(x,t), which relate to the

discrete model through

(3A.1.26)

Substituting Equation (11) into Equation (14), we focus on the force term on the right side and
consider no proliferation or death. We expand the cell-cell interaction force using the small
cell length parameter [V, small as the number of cell boundaries inside the spatial average
interval is large, i.e. n > 1in (z — oz, z + dx). We then simplify to leading order, integrate over
the spatial average interval, and perform spatial mean-field approximations using n > 1 in the
spatial average interval. We arrive at the force term, —(1/n) 0%f/0z?, written in Equation (3),
where the continuous cell-cell interaction force, f, is given by Equation (4). This force term has
an important physical interpretation where the cell density flux, j(x,t), is equal to the gradient

of the cell-cell interaction force,

jla,t) = ————"—. (3A.1.27)

Further we find the cell velocity, u(x, t), is related to the cell density and gradient of the cell-cell

interaction force through Equation (5).
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3A.2 Numerical methods

Here we present the numerical methods used to solve the discrete and continuum models. Key

algorithms used to generate results are available on GitHub

[nttps://github.com/ryanmurphy42/Murphy2020a.gitl

3A.2.1 Discrete model

We numerically solve the discrete model with a constant time step algorithm, using a forward
Euler approximation to integrate the discrete equations (1), and rejection sampling to determine
when proliferation and death events occur [74]. This method is valid for all proliferation and
death law mechanisms which we consider. However, we note that to improve computational
efficiency, in the case of the constant proliferation and death law mechanism, we could use
Gillespie’s algorithm [[76]. This is possible as the propensities of cells to proliferate or die are
constant within the calculated time to the next reaction interval. This is more difficult for the
linear and logistic proliferation and death mechanisms where, due to mechanical coupling, the
propensity of a cell to proliferate or die can vary appreciably within the calculated time to the
next reaction interval per the Gillespie method. In such a case the Extrande method may be
considered [240].

Euler’s method

To simulate a single discrete realization, we initialise the model with N cells. We prescribe
each cell i with the mechanical cell properties including cell stiffness k¥ and resting cell length
al¥. We prescribe proliferation and death mechanisms to each cell + and any associated pro-
liferation or death cell properties. We define the initial cell positions and then for each time
step of size At = 0.0001 we update the cell positions using a simple forward Euler method
to integrate Equations (1) numerically. At the end of each time step we determine whether a
proliferation or death event occurs and if so which cell has proliferated or died. To do so we use
rejection sampling where we generate three independent random numbers from a uniform
distribution, r1, 79,73 ~ U[0,1]. Then a cell event, which could be either a cell proliferation or
cell death event, occurs when

N() N(#)
ri< Y PI)At+ > D(IY)At,

i=1 i=1


https://github.com/ryanmurphy42/Murphy2020a.git
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N(t)
i.e. with probability Y- [P(iY) + D(1V)] At. Given that a cell event occurs, a proliferation event
=1

occurs if

N(t)
> PUY)
i=1

ro < N

N(t) )
> PIY)+ X DY)
i=1

i=1

Otherwise we have a cell death event. To determine which cell is proliferating, similarly for

dying, we find the index j which satisfies,

J N Jj+1 N
§P(Zi ) Zl (&)

P(YN) > PaY)
=1 i=1

We then update the node positions, cell properties, and indices according to the model de-
scription in Section 2.1. We repeat for each time step until we have reached the final time. This
approach requires that at most one cell event can occur within each time step which is satisfied
for the parameters used in this work. For other parameters where this assumption may not be

valid the size of the time step could be reduced.
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3A.2.2 Continuum model

We now outline the numerical method we use to solve the continuum model. First, for com-

pleteness, we rewrite the governing equations for cell density, ¢(z, t),

oq(z, 102 f(x, 1 1
qg)tzs):_?7 g;t)+ﬂ%wp<“%ﬂ>_q@JyD<ﬂ%ﬂ>, (3A.2.2)

where the cell-cell interaction force, f(x,t), is given by

f@Jy:M%w< —a@JO, (3A.2.3)

1
q(z,t)

and P(1/q(x,t)), D(1/q(x,t)) are the proliferation and death mechanisms, respectively. The

cell properties are governed by

ox(x,1) ox(a,t) _ o _ 3A24
ot +U($,t) ox _07 X—k,a,ﬁ,’}/,ld, ( e )
where the cell velocity u(x, t) is given by,
1 0f(x,t)
= : A.2.
ule, ) ng(z,t)  Ox (9A-25)

In Equation for the cell density we have a second-order spatial derivative, and in
the cell property equations, Equations (8A.2.4), we have first-order spatial derivatives. Both
equations have first-order time derivatives. To begin we discretise the domain of fixed length
L with a uniform mesh with spatial step Axz. We discretise time with a uniform mesh with
time step At. Second-order spatial derivative terms are approximated by standard central
differences. First-order spatial derivatives are approximated by standard upwind differences.
Temporal derivatives are approximated by a Crank-Nicolson approximation. We then have a
system of nonlinear algebraic equations for the cell density, cell stiffness, resting cell length,
and any other cell properties specified by the proliferation and/or death laws. Each result-
ing system of nonlinear algebraic equations we solve sequentially within the same Newton-
Raphson iteration [44] until a convergence tolerance, ¢, is satisfied. In each iteration each
resulting system of linearised tridiagonal algebraic equations is solved using the Thomas algo-
rithm . There are three key choices with this method Az, At, and e. Any implementation of
the numerical method should ensure that Az, At, and e are sufficiently small that the solution

is grid-independent. In the results we present we take Az = 0.01, At = 0.00001, and ¢ = 0.001.

For convenience, we now explain the Newton-Raphson method in more detail and explicitly
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present how we discretise the cell density equation, its boundary condition, discretise cell
property equations, their boundary conditions, and update the interface position when there

are two adjacent populations.

Newton-Raphson method

The following notation is used. We use the subscript j = 1,2, ..., J to represent spatial nodes.
We use the superscript n = 1,2,...,T to represent temporal nodes. We use the superscript
r = 0,1,..., R, to represent the Newton-Raphson iterate within time step n, where iterate
r = R, is the final iterate which meets the convergence tolerance e. For convenience, we will

drop the R,, notation for the final iterate of time step n, for example, we write qgl = q;.“R" for the

cell density at spatial node j.

We now solve for each variable at time step n+ 1. The initial iterate, corresponding to » = 0,

n+1,0

is given by ¢ = ¢ and X"

J
We first solve for the cell density. We substitute Equation (3A.2.3) into Equation (3A.2.2).

= X} for x = k,a, 3,,1a. The following is for the " iterate.

For internal spatial nodes, j = 2,3,...,J — 1, we have, after rearranging so that all terms are
on the right hand side, and for convenience multiplying all terms by At, a system of algebraic

equations

0=—g; """ +g]

At 1 1 1
Kio| o —ajon | =267 | o —af | KL | o —ajy
451 qj Zj+1

o kn+1,r71 1 _ anJrl,rfl _ 2kn+1,r71 1 o an+1,r71
J—1 qn—&-l,r Jj—1 J qn-i-l,r J

At

2n(Ax)?
2
2n(Ax) ik !
1 (3A.2.6)
n+1,r—1 n+1,r—1
+ ki (g”*“ — @ ) ]

J+1

1 1
(q?) P (M
1 1
+1, +1,
q? TP( n+1,r> - q? TD ( n+1,r>] .
4; 4;

For boundary nodes, j = 1,J, we have fixed boundaries which correspond to zero velocity

boundary conditions

@) _o  w—o.L. (3A.2.7)

We apply a forward difference approximation to Equation (3A.2.7) at = = 0, corresponding to
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spatial node j =1,

1 1

+1,r—1 +1,r—1 +1,r—1 +1,r—1

k; r (qn_H’r . ag T > o k?f T (qn—HJ. . a711 T >] , (3A28)
2 1

1
Ax

0=

and a backward difference approximation to Equation (3A.2.7) at x = L, corresponding to

spatial node j = J,

1 . 1

+1,r—1 +1,r—1 +1,r—1 +1,r—1

k? ' (qn—i—l,r B a? ' ) - k?—l " (qn+1,r B a?f—lr )] . (3A29)
J J—1

Equations (3A.2.6), (3A.2.8) and (3A.2.9) can be combined to form a tridiagonal matrix F(gq™t1:7),

where ¢"t" is the system of algebraic equations of the " iterate of the Newton-Raphson
method at time step n + 1. We then calculate the Jacobian, J(q"t4"), of F(q™t1 ™). We form

a linear system for the r!" iterate of the Newton-Raphson method within the time step n + 1 as
J(qn—i-l,?“) Sqn+1,7’ — _F(q”'f‘lﬂ“)’ (3A21 0)

where 8q" 17 is the Newton-Raphson correction. As F(q"*'") is tridiagonal we solve this

using the Thomas algorithm [254], to the determine the next iterate,

gl = gl 4 ggn e (3A.2.11)

Next we sequentially solve for each cell property. We calculate the velocity at each node,

n+1,r
j ’

1 1 1 1
+1, +1,r—1 +1,r—1 +1,r—-1 +1,r—-1
Vi = [k;lﬂ ' <an — a4 ) — kT (qn+1,r -4 >] - (3A.2.12)

n q; j+1 -1

[

Then we substitute Equation (3A.2.5) into Equation (3A.2.4) and consider x = k. If v;?“”" > 0,
then we apply a backward difference approximation to the first-order spatial derivatives and a

Crank-Nicolson approximation for the time derivative

_gn+lr
0 fkj — k;‘

At 1 1
SN S % [ I S - kP — k7
277(A5U)2{ [ J <q;w J) j—1 <q§z1 J 1>] [J J 1]

n+1,r 1 n+1,r—1 n+1,r 1 n+1,r—1 n+1,r n+1,r
k; (qn+1,r 9 ) — ki <qn+17r ~ % )] [kj — ks } }

J i1

+

(3A.2.13)
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Similarly, if v;.’“”" < 0, then we apply a forward difference approximation.

For only mechanical relaxation or for mechanical relaxation with proliferation, we have fixed
boundary conditions at x = 0, L, at spatial nodes j = 1, J, respectively,
B =R
(3A.2.14)
KN = ke
These boundary conditions also apply for cell death in a homogeneous population. However,
when we have cell death with two adjacent populations, for example in Section 3.2, we need
to modify a boundary condition when one population becomes extinct. To do so, we calculate
the total cell number for each tissue within each time step. When the total number of cells in
a tissue decreases below one we remove this tissue by setting the interface position equal to
the relevant domain boundary, and make cell properties homogeneous across the domain by
setting them equal to the values in the remaining tissue. Then, similarly to Equations
and (3A.2.11), we solve for k"+17.

In the examples presented in this work, the resting cell length, a, and proliferation and death
properties, 3,~ and l4, are homogeneous across the population. Therefore, they do not need
to be simulated and we set a1 = 58"+ = syt = §IATHT = 0. However, if any of
a, 3,7 or ly are heterogeneous, we extend the above by discretising the relevant cell property
equations and boundary conditions similarly to Equations (3A.2.13) and (3A.2.74).

When we have two populations we also update the interface position, s(¢). To do so, we
find the closest spatial node to s(t) and calculate the velocity at this node. Suppose that the
closest spatial node is at node j then we set 55" 1" = v;‘“’TAt and update the interface

position through
gntLr — gn + STl (3A215)

We iterate until ||8g™ 17, 8km LT, santhr, s34 LT 613*”, 55" | < €.

Initial conditions

Equations (3)-(6) have the following initial conditions, for 0 < = < L,

q(z,0) = qo(x), x(z,0) = xo(z) for x =k, a, 3,7, 4. (3A.2.16)
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If initial conditions are provided only for the discrete model they can be converted to continuum
model initial conditions. This has been discussed in previous work, see Supplementary Section
1 of Murphy et al. (2019) [157].
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3A.3 Homogeneous population

We now present additional results for the homogeneous population: an exact calculation for
extinction with constant proliferation and death mechanisms, and results for logistic proliferation

and death mechanisms.

3A.3.1 Extinction for constant proliferation and death

In Section 3.1 of the main manuscript, we consider a homogeneous population with constant
proliferation and constant death mechanisms with equal rates. In this case, the average of the
discrete realizations shows good agreement with the corresponding solution of the continuum
model. However, each individual realization exhibits very different behaviour to the continuum
model. Due to the total cell number following a linear birth-death process independent of me-
chanical relaxation, each individual realization will eventually become extinct and the averaged
total cell number displays increasing variance with time (Ross 1996). We now present the exact
expressions for the extinction probability, mean, and standard deviation of the linear birth-death
process. Corresponding results from the discrete realizations are then shown to match these

expressions.

For the constant proliferation and death law combination with equal proliferation and death
rates, 3, we follow the work of Morgan (1977) who applies conditioning arguments to find the

following probability generating function

o (z+Bt(1—=2) N(O)
G(z;t) = (14—&(1—2)) , (3A.3.1)

where N(0) is the initial cell population and z is a dummy variable defined for |z| < 1. The

extinction probability, P (E), is

N(0)
P (E) =P (N(t) = 0) = G(0;t) = (1 ftﬁt> _ (3A.3.2)

We observe that P (N(t) =0) — 1 as t — oo, i.e. every individual realization will eventually

become extinct. The mean is the same as the initial cell number,

= N(0). (3A.3.3)
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The standard deviation, o(t), is
o(t) = /2N (0)pt. (BA.3.4)

We now compare these exact formulas with our discrete simulation, with N (0) = 40 and find

very good agreement (Figure [3A.3).

Figure 3A.3: Comparison of 5000 discrete realizations with the exact expressions for the (a) mean
and variance of total cell number and the (b) probability of extinction, IP (F). Results shown for a
homogeneous population with £ = 10, a = 0, constant proliferation and death laws with equal rates,

8 =0.01, and 0 < ¢ < 10000.
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3A.3.2 Reduced variance with cell-length-dependent mechanisms

In Figures 3 and 4 in the main manuscript, we observe reduced variance in population with
cell-length dependent proliferation and death mechanisms in comparison to cell-length inde-
pendent proliferation and death mechanisms. Here, we explore the difference between con-
stant and linear proliferation death mechanisms by presenting a single realisation for each
(Figure [3A.4). In the constant proliferation and death mechanism case the net proliferation
rate, which is the sum of probabilities of each cell to proliferate minus the sum of probabilities
of each cell to die, is always zero (Figure [3A.4e). However, with the linear proliferation and
death mechanism the net proliferation rate adjusts, due to changes in number of cells and their

cell lengths, to stabilise the population at its equilibrium value (Figure [3A.4f,h).
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Figure 3A.4: Homogeneous population with constant and linear cell-length dependent proliferation and
death mechanisms. (a)-(b) Net proliferation rate for a single cell, P — D, dependent cell length, {. (c)-(d)
Single realizations of cell boundary characteristics for 0 < ¢ < 100. (e)-(f) Net proliferation rate for the
single realizations. (g)-(h) Total cell number for single realization (blue) compared to the continuum

solution (green).
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3A.3.3 Homogeneous population: logistic proliferation and death

In Figures 3 and 4 in the main manuscript we present results for a homogeneous population
with constant and linear cell-length-dependent proliferation mechanisms, respectively. We now

present results for homogeneous population for the logistic proliferation and death mechanism

(Figure BA.5).
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Figure 3A.5: Homogeneous population with logistic proliferation and death mechanisms. Proliferation
only, death only, and proliferation with death shown in left, middle and right columns, respectively. (a)-
(c) Single realizations of cell boundary characteristics for 0 < ¢ < 100. (d)-(f), (9)-(i), (j)-(I) Density
shapshots at times ¢ = 0,25, 75, respectively. (m)-(o) Total cell number. The average and standard
deviation (blue error bars) of 2000 discrete simulations are compared to solution of continuum model
(green).
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3A.3.4 Piecewise proliferation: varying mechanical relaxation rate

In Figure 7 in the main manuscript we show that the solution of the continuum model can
differ significantly from the solution to the discrete model with slow mechanical relaxation,
k = 0.0001, and matches extremely well when & = 1000. We now present the density snapshots
corresponding to Figure 7. For £ = 0.0001 the density snapshots have jumps at locations of
the initial cell boundaries and density in the discrete model is higher than the continuum model

(Figure [3A.6p,c,e). For k£ = 1000 the discrete model and continuum model are consistent

(Figure [3A.6b,d.f).
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Figure 3A.6: Homogeneous population with piecewise proliferation mechanism. With slow mechanical
relaxation, £ = 0.0001, and faster mechanical relaxation, £ = 1000, shown in left and right columns,
respectively. (a)-(f) Density snapshots at times ¢ = 0, 30, 100 where the average and standard deviation
(blue error bars) of 2000 discrete simulations are compared to solution of continuum model (green).
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In Figure 7 in the main manuscript we show that at later times the solution of the continuum
model can differ significantly from the solution to the discrete model with slow mechanical
relaxation, £ = 0.0001, and matches extremely well when £ = 1000. We now show N (400) for

intermediate values of & in Figure [3A.7

Figure 3A.7: Homogeneous population with piecewise proliferation mechanism. N (400) with varying
mechanical relaxation rates through cell stiffness k. Increasing the cell stiffness k& improves matching
between discrete and continuum model. Cell stiffness plotted on a logarithmic axis.
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3A.4 Mechanical cell competition

We now present additional results for a heterogeneous population: an exact calculation for cell

size at mechanical equilibrium, and results for logistic proliferation and death.

3A.4.1 Two populations: cell size at mechanical equilibrium

Here we show that, for cells in extension, cells with lower cell stiffness are larger than cells
with higher cell stiffness at mechanical equilibrium. As mechanical relaxation is chosen to be
fast relative to the proliferation and death rates the system will be at mechanical equilibrium,
except for the short transition following a proliferation or death event.

In Section 3.2 of the main manuscript, we are interested in two adjacent populations which
we denote tissue 1 and tissue 2. We assume there are N; cells in tissue ¢ and cells in tissue i
have cell stiffness K; and resting cell length A;. From previous work the interface position
at mechanical equilibrium, S = lim;_, s(t), is

KiAr . L _
So fa TN~ A2

(3A.4.1)

K
K2]1V1 + NLz
Assuming A; = 0 this simplifies to

L
S= %N, (3A.4.2)
Ko Ny + 1

Letting /; be the length of a cell in tissue i then

S
N

ly = )
1
L-S5
a .

(3A.4.3)

Iy = N

Substituting Equation (BA.4.2) into Equation (BA.4.3) gives

L
R
- L

Ny + B

1 =
(3A.4.4)
la

It can then be shown that if K; < Ks then I3 > l». This corresponds to cells of lower stiffness
being larger at mechanical equilibrium and this is independent of the number of cells in tissue
1and 2.



CHAPTER 3A. SUPPLEMENTARY MATERIAL 129

3A.4.2 Mechanical cell competition: robustness to initial conditions

In this section, we explore the robustness of results to changes in the initial conditions. We
consider the linear combination as in Section 3.2 and Figure 6. In Figure 6 we started the
simulation with 20 cancer cells, each with cell stiffness k; = 10, and 20 healthy cells, each with
cell stiffness ky = 20. We first keep k1 = 10 and &k = 20 and start the simulations with one
cancer cell and 39 healthy cells in Figure [3A.8] and with 10 cancer cells and 30 healthy cells in
Figure @ We then set k; = 10 and ko = 11 and start with 20 cancer cells and 20 healthy
cells in Figure BA.10] In all results we observe that same behaviour that the difference in cell
stiffness is sufficient to allow cancer to invade and takeover the tissue, provided cancer cells
have lower stiffness than healthy cells.

We also note that when starting the simulation with one cancer cell, as in Figure [3A.8] there
is a slight mismatch between the discrete model and the continuum model. This is because in
the discrete model the cancer cells will initially go extinct with a higher probability than if the

model is started with a higher initial number of cancer cells as in Figures [3A.9]and 6.
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Figure 3A.8: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. Starting with 1 cancer cell and 39 healthy cells. First row
shows a single realization of cell boundary characteristics for 0 < ¢ < 200. Colouring in (a),(b) represent
cell density and cell stiffness, respectively. (c)-(d), (e)-(f), (g)-(h) Density and cell stiffness snapshots,
left and right, respectively, at times ¢t = 0, 25, 50, respectively. (i) Total cell number, N(¢) > 0, for cancer
(red/magenta) and healthy cells (blue/cyan) for the discrete/continuum solutions. (j) Interface position,
s(t), where the dotted line shows the edge of the domain. The average and standard deviation (blue
error bar) of 2000 discrete simulations are compared to the solution of the continuum model (green).
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Figure 3A.9: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. Starting with 1 cancer cell and 39 healthy cells. First row
shows a single realization of cell boundary characteristics for 0 < ¢ < 200. Colouring in (a),(b) represent
cell density and cell stiffness, respectively. (c)-(d), (e)-(f), (g)-(h) Density and cell stiffness snapshots,
left and right, respectively, at times ¢t = 0, 25, 50, respectively. (i) Total cell number, N(¢) > 0, for cancer
(red/magenta) and healthy cells (blue/cyan) for the discrete/continuum solutions. (j) Interface position,
s(t), where the dotted line shows the edge of the domain. The average and standard deviation (blue
error bar) of 2000 discrete simulations are compared to the solution of the continuum model (green).
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Figure 3A.10: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. Starting with 20 cancer cell and 20 healthy cells and set
k1 = 10 and ko = 11. First row shows a single realization of cell boundary characteristics for 0 < ¢ < 200.
Colouring in (a),(b) represent cell density and cell stiffness, respectively. (c)-(d), (e)-(f), (g)-(h) Density
and cell stiffness snapshots, left and right, respectively, at times ¢ = 0, 25, 50, respectively. (i) Total cell
number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan) for the discrete/continuum
solutions. (j) Interface position, s(t), where the dotted line shows the edge of the domain. The average
and standard deviation (blue error bar) of 2000 discrete simulations are compared to the solution of the
continuum model (green).
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3A.4.3 Mechanical cell competition: logistic combination

In this section, we repeat the scenario presented in Section 3.2 but now with the logistic prolif-
eration and death mechanisms rather than the linear proliferation and death mechanisms. We
observe similar qualitative results.

With mechanical relaxation and proliferation only, we observe that the interface position
is on average the same as the initial condition which was chosen as mechanical equilibrium
(Figure BAT1). This is expected as proliferation is independent of cell length and therefore
mechanical relaxation. Therefore we also expect that the total number of cells in tissue 1 and
tissue 2 are, on average, equal (Figure [3A.T1f). From Equation we expect the initial
condition of mechanical equilibrium to be maintained. Similarly, in the continuum model both
tissues have the same proliferation rate therefore the interface position, s(¢), is maintained
(Figure BA.11j).

For mechanical relaxation with proliferation and death, we now observe that the cancer cells
extend and the healthy cells are smaller. The smaller healthy cells then eventually die and the
cancer cells take over the domain. This is because the death mechanism is now dependent
on cell length and therefore dependent on mechanical relaxation (Figure [3A.12). Note that the
total cell number for each population does not decrease below zero, the error bars represent

the standard deviation about the mean.
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Figure 3A.11: Results for cancer invasion with adjacent populations using logistic proliferation and
death mechanisms with proliferation only. (a),(b) A single realization of cell boundary characteristics
for 0 < ¢ < 100. Colouring in (a),(b) represent cell density and cell stiffness, respectively. (c)-(d),
(e)-(f), (g)-(h) Density and cell stiffness snapshots, left and right, respectively, at times ¢t = 0,25, 100,
respectively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan)
for the discrete/continuum solutions. (j) Interface position, s(¢), where the dotted line shows the edge
of the domain. The average and standard deviation (blue error bars) of 2000 discrete simulations are
compared to the solution of the continuum model (green).
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Figure 3A.12: Results for cancer invasion with adjacent populations using logistic proliferation and
death mechanisms with proliferation and death. First row shows a single realization of cell boundary
characteristics for 0 < ¢ < 500. Colouring in (a),(b) represent cell density and cell stiffness, respec-
tively. (c)-(d), (e)-(f), (g)-(h) Density and cell stiffness snapshots, left and right respectively, at times
t = 0, 25,200, respectively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells
(blue/cyan) for the discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows
the edge of the domain. The average and standard deviation (blue error bars) of 2000 discrete simula-
tions are compared to the solution of the continuum model (green).
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3A.4.4 Varying mechanical relaxation rate

In Figure 6 in the main manuscript, mechanical cell competition is considered with cell stiff-
nesses K; = 10, K, = 20, and linear proliferation and death mechanisms. Here, in Fig-
ure BA-T3] we present the same problem with reduced mechanical relaxation rates and ob-
serve that the continuum model is a reasonably good approximation even for cell stifnesses
K7 =0.0001, Ko = 0.0002.

Figure 3A.13: Results for cancer invasion with adjacent populations using linear proliferation and
death mechanisms with proliferation and death with slower mechanical relaxation, ¥ = 0.1 in (a,b)
and k£ = 0.0001 in (c,d). (a,c) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells
(blue/cyan) for the discrete/continuum solutions. (b,d) Interface position, s(¢), where the dotted line
shows the edge of the domain. The average and standard deviation (blue error bar) of 2000 discrete
simulations are compared to the solution of the continuum model (green).
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4.0 Preamble

An article published in Applied Mathematics Letters

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2021). Travelling waves in a free boundary
mechanobiological model of an epithelial tissue. Applied Mathematics Letters. 111: 106636.

[doi: 10.1016/].aml.2020.106636] [arxiv preprini]

This chapter includes Publication 3, addresses objective 3 and research question 3. This
chapter extends the work of Chapters 2 and 3, by considering a free boundary rather than a
fixed boundary and analysing the continuum model derived in earlier chapters. The key results
include extending the continuum model to a free boundary and examining travelling wave be-
haviour. Using this we show travelling wave solutions that may invade or retreat depending on
whether the carrying capacity density corresponds to cells being in compression or extension.
Further, travelling wave solutions have well-defined fronts and are not associated with hetero-
clinic orbits in the phase plane. Furthermore, as this chapter focuses solely on the continuum
model, derived in earlier chapters, and due to the formatting of the journal where this article
has been published, the layout of this chapter is slightly different to other chapters in Part 1 of
this thesis. This chapter includes the following sections: Abstract; Introduction; Mathematical
Model; and Travelling waves, comprising the results, discussion, and conclusion. Supplemen-
tary material, including additional results, associated with publication 3, is presented in Chapter
4A.


https://doi.org/10.1016/j.aml.2020.106636
https://arxiv.org/pdf/2005.13925.pdf
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4.1 Abstract

We consider a free boundary model of epithelial cell migration with logistic growth and non-
linear diffusion induced by mechanical interactions. Using numerical simulations, phase plane
and perturbation analysis, we find and analyse travelling wave solutions with negative, zero,
and positive wavespeeds. Unlike classical travelling wave solutions of reaction-diffusion equa-
tions, the travelling wave solutions that we explore have a well-defined front and are not associ-
ated with a heteroclinic orbit in the phase plane. We find leading order expressions for both the
wavespeed and the density at the free boundary. Interestingly, whether the travelling wave so-
lution invades or retreats depends only on whether the carrying capacity density corresponds

to cells being in compression or extension.
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4.2 Introduction

Nonlinear reaction-diffusion equations describing the dynamics of a single species often sup-
port travelling wave solutions [T61][201]. The classical example is the Fisher-KPP equation
which has linear diffusion and a logistic reaction term [64][T41]. Travelling wave solutions of the
Fisher-KPP equation are associated with heteroclinic orbits in the phase plane and correspond
to invasion with a positive minimum non-dimensional wavespeed ¢ > 2 [96}[T61]. Since the cell
density ¢(z,t) — 0 as x — oo, these solutions do not have compact support and do not allow
us to identify a well-defined front often observed in cell invasion experiments and ecological
invasion [TT18][T40|[T41][212].

One way of overcoming the lack of a well-defined front is to incorporate degenerate non-
linear diffusion, as in the Porous-Fisher equation [194][T95][200}[247]. An alternative approach

to obtain travelling wave solutions with a well-defined front is to re-formulate the Fisher-KPP

and Porous-Fisher models as moving boundary problems with a Stefan condition at the mov-
ing boundary [57][58][62}[63]. Interestingly the Fisher-KPP, Porous-Fisher, and Fisher-Stefan
models always lead to invading travelling waves where previously vacant regions are even-
tually colonised. None of these single-species models lead to retreating travelling waves
where colonised regions eventually become uncolonised. Similar invading behaviour has
been observed in discrete space and velocity jump processes and their continuum approxi-
mations [T39][T43]. Retreating and invading waves have previously been observed for multi-
species models [T16].

In this work we consider a single-species model which leads to travelling wave solutions
with a well-defined front that can either invade or retreat. Our free boundary model, which we
derived previously (Chapter [3 [T9}[158][164]), is motivated from a discrete model of a one-
dimensional chain of epithelial cells. In this model cells are treated as mechanical springs that
can be stretched or compressed and relax to a natural resting length. Cells are also able to
proliferate logistically up to a maximum carrying capacity density (Chapter [3} [19][158}[164]).
We find travelling wave solutions that are very different to the classical travelling waves of
the Fisher-KPP, Porous-Fisher, or Fisher-Stefan models. We find travelling wave solutions for
—00 < ¢ < oo Which depend on the two dimensionless parameters. In the phase plane these
travelling waves are not associated with heteroclinic orbits. Instead, they are associated with
an orbit that leaves a saddle equilibrium node until the trajectory passes through a special point
in the phase plane determined by the free boundary conditions. We find and validate analytical
expressions for both the wavespeed and the density at the free boundary. Interestingly, the

distinction between whether the population retreats (¢ < 0) or invades (¢ > 0) depends only on
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whether the carrying capacity density corresponds to cells being in compression or extension.

4.3 Mathematical model

We consider a one-dimensional chain of cells forming an epithelial sheet of total length L(t).
Each cell can be thought to act like a mechanical spring which mechanically relaxes towards
its resting cell length, a, according to Hooke’s law. Each cell can proliferate or die logistically.
Our previous work (Chapter [3] [T9}[158]) shows this results in a moving boundary problem
with nonlinear diffusivity, a logistic reaction term, and no-flux mechanical relaxation boundary

conditions. After nondimensionalisation, the cell density, ¢(x,t) > 0, which depends on position

z and time ¢, is governed by (Chapters [2and 8} [T9}[157][158])

aqg;, b _o z =0, (4.3.2)
8q((93; t) _ Q(x(;t)?’ (q(; e H) 7 x = L(t), (4.3.3)
d[c,lit) _ _q(xl,t)?’ Oqé:;, 28 x = L(t), (4.3.4)

with two dimensionless parameters x and ¢ occurring only in the free boundary condition at
z = L(t) in Eq. (#.3.3). Thefirst, k = Ka, is the product of the carrying capacity density, X, and
the resting cell length, a, and determines whether the carrying capacity density corresponds
to cells being in compression (x < 1), at the resting length (« = 1), or in extension (x > 1).
The second, ¢ = +/Bn/(4k), is the ratio of the proliferation rate, 3, and mechanical relaxation
rate, that depends on the cell stiffness £ and mobility coefficient . Eq. governs the
evolution of the free boundary due to mechanical relaxation and mass conservation but can be
thought of as a nonlinear analogue of a Stefan condition [57)[58|[63]. Eqgs. (4.3.1)—(4.3.4) can be
solved numerically by using a boundary fixing transformation [120], discretising the subsequent
equations on a uniform mesh using a central difference approximation. The resulting system
of ordinary differential equations are solved using an implicit Euler approximation, leading to a

system of nonlinear algebraic equations that are solved using Newton-Raphson iteration. Key
code and algorithms are available on


https://github.com/ryanmurphy42/Murphy2020c.git
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Figure 4.1: Travelling waves dependon x: ¢ < 0for k = 0.5 < 1,and ¢ > 0 for k = 2 > 1. (a)-(b) Density
snapshots for varying « at ¢ = 0 (blue), 10 (red), 20 (yellow), 30 (purple), 40 (green), 50 (cyan). (c)-(d)
(Q, p) phase planes for varying «. The travelling wave solution corresponds to a trajectory governed by
Egs. (magenta) between the saddle node at (Q*,p*) = (1,0) from Eq. (black circle) and

terminating at the intersection of Eq. (blue) and (4.4.5) (green) given by Eq. (#.4.6) (red circle).
Continuum solution from Egs. (4.3.1)—(4.3.4) (cyan line). The degenerate node (Q*,p*) = (0,0) is also
shown (black circle). All results for ¢ = 1.

4.4 Travelling waves

In Figure we present numerical solutions of Eqgs. (.3.1)—(4.3.4) for varying x and initial
density condition ¢(z,0) = 1 for 0 < < L(0) = 10, which remains uniform and stationary, with

¢ = 0fort > 0, when x = 1. The numerical results in Figure 2(a) suggest the emergence of
travelling wave solutions with ¢ < 0 when x < 1 (Figure a)), with ¢ = 0 when « = 1 (not
shown), and ¢ > 0 when « > 1 (Figure [d.1|b)). The travelling waves form after initial transient
behaviour. For x > 1 the invading travelling waves in the numerical simulations continue as
t — oo. For k < 1 we observe retreating travelling wave-like behaviour with ¢ < 0 for some
intermediate time before L(t) approaches x = 0 and boundary effects play a role (not shown).

The cell density at the free boundary is @7, > 0.
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After a travelling wave has formed L(t) ~ ct (Figure S6), where c is the constant speed of
propagation, and we introduce travelling wave coordinates z = = — ct. Letting Q(z) = q(x,t)
then Eq. (4.3.1) becomes

d < 1 dQ(z)> RGN Q) (1-Q(2)=0, —oo<z<0. (4.4.1)

dz \Q(2)? dz dz

where we choose z = 0 to correspond to the free boundary at « = L(t).
To analyse Eq. (4.4.1) in the two dimensional phase plane we let p(z) = (1/Q(2)?) dQ(z)/d=
[732] to give

dQ
dz

dp

=Q% L =QlaQ-1-q). (4.4

The dynamical system given by Egs. (4.4.2) has two equilibrium points. The first at (Q*, p*) =
(0,0) is a degenerate node. The second at (Q*,p*) = (1,0) is a saddle node for ¢ # 0 and a
degenerate node when ¢ = 0. Interestingly, in contrast to the Fisher-KPP equation [T67], here

linear stability analysis provides no restrictions on c.

We return to the boundary conditions from Eqgs. (4.3.2)—(4.3.4), and after transforming to

travelling wave coordinates and writing in terms of p, we obtain

(Q,p) = (1,0), z — —00, (4.4.3)
p= qlb (1-kQ), z=0, (4.4.4)
p=—cQ, z=0, (4.4.5)

where Eq. (4.4.3) is informed by numerical travelling wave solutions in Figure [4.1]

In Figures c),(d) we generate the (Q, p) phase plane for k < 1 and k > 1, respectively,
using MATLAB functions quiver and ode45 [145]. Trajectories corresponding to travelling wave
solutions are initiated on the relevant eigenvector associated with the saddle node. We find that

travelling wave solutions correspond to phase plane trajectories that run between (Q*,p*) =
(1,0), and a special point given by the intersection of Egs. (4.4.4) and (4.4.5) given by

k—cod Kk —cd

(QL,pL)=< L« > (4.4.6)

The remainder of the trajectory beyond (Q, pr), obtained by solving Egs. (4.4.2), corresponds
to z > 0 and is not associated with the travelling wave solution which is restricted to z < 0.

The part of the trajectory with z > 0 tends to infinity rather than to the degenerate equilibrium
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Figure 4.2: Travelling wave perturbation analysis. (a) Properties of the travelling wave. Wavespeed ¢
as a function of « (blue) and density at free boundary @, as a function of « (red). Solid lines: continuum
model given by Egs. (4.3:1)—(4.3.4). Dashed lines: leading order implicit solution given by Eq. (4.4.8).
(b) Travelling wave solutions for x = 0.5 (top), x = 1 (middle), x = 2 (bottom) obtained by continuum

model from Egs. (4.3.1)—(4.3.4) (blue solid) and leading-order perturbation solution from Eq. (4.4.7) (red
dashed). All for fixed ¢ = 1.

point at (Q*,p*) = (0,0). Therefore, the travelling wave solution is not associated with a
heteroclinic orbit. This is very interesting as classical travelling waves solutions are associated

with heteroclinic orbits in the phase plane [T61]- [62].

To provide insight into the travelling wave solutions in Figure [4.T]we now seek to determine
a relationship between ¢, x, and ¢. By solving the continuum model we expectc - 0as x — 1
(Figure a)). Therefore, we seek a perturbation solution p(Q) = po(Q) + cp1(Q) + O (c?) for
|c| < 1 which we substitute into the equation for dp/d@ determined from Egs. to find

po(Q) = £/2[Q —log,.(Q) — 1], (4.4.7)

where the positive root corresponds to ¢ < 0 and the negative root corresponds to ¢ > 0. The
integration constant is chosen such that Eq. (#.4.7) satisfies Eq. (4.4.3). Eq. (¢.4.7) corre-

sponds to a small-c approximation of the unstable manifold of the saddle point (1,0). Applying
the free boundary condition from Eq. (4.4.5) and using @1, from Eq. (4.4.6) gives

o = (i — o) \/2 [ﬂ_lcgﬁ ~log, <,<;—1c¢>> _1]. (4.4.8)

Eq. (4.4.8) can be solved implicitly for ¢ as a function of x and ¢ and provides good agreement

with the long time numerical solutions of Egs. (4.3.1)—(4.3.4) (Figure [4.2). To find an approxi-
mate explicit form for c and Q1,, we expand Eq. (4.4.8) about x — c¢ = 1, and use Eq. (4.4.6) to
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give

k—1

p+1

c= +(’)((/<;—c¢—1)3/2), QL=

(4.4.9)

We find these leading order expressions in Eq. to be accurate close to ¢ = 1 (Figures
S1-85).

In Figure we plot the shape of the travelling wave obtained by considering long time
numerical solutions of Egs. (4.3.1)—(4.3.4) and compare this to the leading order perturbation
solution. The leading order perturbation solution is obtained by solving Eq. with the
definition of p(z) in Egs. together with Eq. as the initial condition. We observe
excellent agreement for || < 1 about k = 1.

In summary, by considering a reaction-diffusion equation arising from a biologically mo-
tivated discrete model, we find an interesting result where whether a population invades or
retreats corresponds to whether cells at the carrying capacity density are in compression or
in extension, respectively. We also obtain exact expressions for the speed of travelling wave
solutions of Eqgs, (4.3.1)—(4.3.4), together with useful approximations of the shape of the trav-
elling wave solutions when |¢| < 1. We do not pursue an existence proof of these travelling

wave solutions here, but leave this for future consideration [[118].
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S1 Additional Figures

Results for Figure 1 and 2 in the manuscript are presented for ¢ = 1. We now reproduce these
figures for ¢ = 0.5 and ¢ = 2 in Figures[S1] [S2 and Figures[S3] respectively.

In Figure [S5] we plot the dependence of the wavespeed, ¢, and density at the boundary,
Q1, against ¢ for k = 0.75 and k = 1.25.

In Figure [S6 we support the statement that after the travelling waves have formed L ~ ct
by plotting L(t) against ¢ for the results corresponding to Figure 1. Similar excellent agreement

is found for other results (not shown).

k<1 k>1
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Figure S1: Results for ¢ = 0.5. Travelling waves depend on «: ¢ < 0 for k = 0.5 < 1, and ¢ > 0 for
k =2 > 1. (a)-(b) Density snapshots for varying « at ¢t = 0 (blue), 10 (red), 20 (yellow), 30 (purple), 40
(green), 50 (cyan). (c)-(d) (@, p) phase planes for varying . The travelling wave solution corresponds
to a trajectory governed by Egs. (6) (magenta) between the saddle node at (Q*, p*) = (1,0) from Eq. (7)
(black circle) and terminating at the intersection of Eq. (8) (blue) and 9) (green) given by Eq. (10) (red
circle). Continuum solution from Egs. (1)—(4) (cyan line). The degenerate node (Q*,p*) = (0,0) is also
shown (black circle).
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Figure S2: Travelling wave perturbation analysis for ¢ = 0.5. (a) Properties of the travelling wave.
Wavespeed ¢ as a function of « (blue) and density at free boundary @ as a function of « (red). Solid
lines: continuum model given by Egs. (1)—(4). Dashed lines: leading order implicit solution given by
Eqg. (12). (b) Travelling wave solutions for k = 0.5 (top), x = 1 (middle), x = 2 (bottom) obtained by
continuum model from Eqgs. (1)—(4) (blue solid) and leading-order perturbation solution from Eq. (11)
(red dashed).
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Figure S3: Results for ¢ = 2. Travelling waves depend on x: ¢ < 0 for x = 0.5 < 1, and ¢ > 0 for
k = 2 > 1. (a)-(b) Density snapshots for varying « at ¢ = 0 (blue), 10 (red), 20 (yellow), 30 (purple), 40
(green), 50 (cyan). (¢)-(d) (@, p) phase planes for varying . The travelling wave solution corresponds
to a trajectory governed by Egs. (6) (magenta) between the saddle node at (Q*, p*) = (1,0) from Eq. (7)
(black circle) and terminating at the intersection of Eq. (8) (blue) and (9) (green) given by Eq. (10) (red

circle). Continuum solution from Egs. (1)—(4) (cyan line). The degenerate node (Q*,p*) = (0,0) is also
shown (black circle).
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Figure S4: Travelling wave perturbation analysis for ¢ = 2. (a) Properties of the travelling wave.
Wavespeed ¢ as a function of « (blue) and density at free boundary @, as a function of « (red). Solid
lines: continuum model given by Egs. (1)—(4). Dashed lines: leading order implicit solution given by
Eqg. (12). (b) Travelling wave solutions for x = 0.5 (top), « = 1 (middle), x = 2 (bottom) obtained by
continuum model from Egs. (1)—(4) (blue solid) and leading-order perturbation solution from Eq. (11)
(red dashed). All for fixed ¢ = 2.
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Figure S5: Travelling wave perturbation analysis. Properties of the travelling wave. Wavespeed c as
a function of ¢ (blue) and density at free boundary @ as a function of ¢ (red) for (a) x = 0.75 and

(b) k = 1.25. Solid lines: continuum model given by Egs. (1)—(4). Dashed lines: leading order implicit
solution given by Eq. (12).
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Figure S6: Evolution of tissue length L(¢). Comparison of continuum model given by Egs. (1)—(4) (solid
blue lines) with L(t) ~ ct (red dashed lines). (a) k = 0.5 < 1 and L(¢t) = 10 + ¢t where ¢ = 0.484. (b)
k=2>1and L(t) = 10 + ¢t where ¢ = —0.256. Solutions correspond to Figure 1 for ¢ = 1.
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5.0 Preamble

An article published in Physical Biology

Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo H, Baker RE, Simpson MJ (2021).

The role of mechanical interactions in epithelial mesenchymal transitions. Physical Biology.

18:046001. [doi:10.1088/1478-3975/abf425)] bioRxiv prepring

This chapter includes Publication 4, addresses objective 4 and research question 4. This
chapter extends the work of Chapters 2, 3, and 4, by incorporating diffusion of a chemical that
influences the rate at which cells detach from the tissue boundary, in a process called epithelial-
mesenchymal transition (EMT). As explored in earlier chapters, cells in epithelial tissues are
characterised as moving collectively and being closely adherent. However, these epithelial
cells can undergo phenotypic and morphological changes to partially or fully transition to mes-
enchymal cells, typically characterised as cells that are less adherent to other cells and tend
to move as individuals, in a process called epithelial-mesenchymal transitions (EMT) (Figure
[70}[249]). The key results of this chapter are to extend the discrete model from previ-
ous chapters to describe the role of mechanical interactions in epithelial-mesenchymal transi-
tions. To incorporate epithelial-mesenchymal transitions we extend the free boundary model in
Chapter 4 by allowing cells to detach from the free end of the tissue dependent on a diffusing
EMT-inducing chemical. Other key results include a derivation to obtain the corresponding the
continuum model, and the continuum model. Using this novel nonlinear free boundary prob-
lem we explore how mechanochemical coupling influences epithelial-mesenchymal-transitions.
Supplementary material, such as numerical methods and additional results, associated with

publication 4, is presented in Chapter 5A.

Figure 5.0: Schematic for epithelial-mesenchymal-transitions (EMT). Figure 1 from reproduced
with permission.


https://doi.org/10.1088/1478-3975/abf425
https://www.biorxiv.org/content/10.1101/2020.12.09.418434v3
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5.1 Abstract

The detachment of cells from the boundary of an epithelial tissue and the subsequent invasion
of these cells into surrounding tissues is important for cancer development and wound healing,
and is strongly associated with the epithelial-mesenchymal transition (EMT). Chemical signals,
such as TGF-3, produced by surrounding tissue can be uptaken by cells and induce EMT. In
this work, we present a novel cell-based discrete mathematical model of mechanical cellular
relaxation, cell proliferation, and cell detachment driven by chemically-dependent EMT in an
epithelial tissue. A continuum description of the model is then derived in the form of a novel
nonlinear free boundary problem. Using the discrete and continuum models we explore how
the coupling of chemical transport and mechanical interactions influences EMT, and postulate

how this could be used to help control EMT in pathological situations.
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5.2 Introduction

Cell detachment driven by epithelial-mesenychmal transitions (EMT) is crucial to many bio-
logical processes: embryonic development; later development in adults; wound healing; and
cancer development [124][229][249]. During EMT, changes in gene expression and post-
translational regulation mechanisms lead to increased invasive ability through the loss of ep-
ithelial characteristics and the acquisition of mesenchymal characteristics [249]. This transition
is characterised by the loosening of cell-cell junctions and breakdown of the basement mem-
brane [249]. EMT can be induced by chemical signals, such as TGF-3 [41], and is regulated by
physical signals such as mechanical stress [77]. While EMT plays an important role in devel-
opment, where it is a highly controlled and regulated process, EMT can be detrimental when
initiated by cancer systems as it accelerates malignant progression and metastasis [178]. Fur-
thermore, as 90% of cancer related deaths are associated to metastatic spread rather than
cancer limited to a primary site [42], EMT is an important factor when considering therapy
regimes [15][23][24}[142]. Previous theoretical models of EMT have largely neglected the role
of mechanical interactions. Therefore, in this work we develop a novel mathematical model to
explore how mechanical interactions between cells influence EMT and the evolution of a pri-
mary tumour. Using our model, we ask when do tumours grow or shrink, and how mechanical
interactions and an EMT-inducing chemical could influence the rate of cell detachment. These
insights could be used to help understand how to control EMT in pathological situations.
Mathematical models have proven to be a powerful tool to improve our understanding of
EMT by providing a conceptual framework in which to integrate and analyse experimental data
and make testable predictions, some of which have since been experimentally validated, for
example, the existence of the epithelial/mesenchymal hybrid state [41}[110}[111][137][226][229]

and waves of temporal cell-cell detachments [12][187]. Experimental and modelling stud-

ies are typically performed either at the single-cell level, by considering regulatory networks
[137}[226][229], or at the population-level, for example where cell populations are modelled
with lattice based frameworks and the inclusion of cell-cell communication results in spatial
heterogeneity [25]. However, existing models for EMT typically do not account for mechanical
relaxation nor cell proliferation, both of which influence cell migration and cell size [25[77].
These processes are thought to play a key role in cell-cell communication, tissue size, and
the rate of cell detachment driven by EMT [25}[26]. Further, existing models typically do not
connect descriptions of single-cell processes to population-scale behaviours.

In this work, we develop and explore a novel mathematical model of EMT which includes

mechanical cellular relaxation, cell proliferation and cell detachment driven by chemical sig-
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nals. We allow individual cells to detach from the tissue at the free boundary where the
chemical concentration is highest [25]. This leads to a novel nonlinear free boundary prob-
lem. The evolution of epithelial monolayers and tumours have previously been modelled as
free boundary problems [140}[198][201]. However, many previous studies specify a classical
one-phase Stefan condition at the free boundary, where the rate of expansion of the free
boundary is assumed proportional to the spatial gradient of the density without strong biolog-
ical justification, or the evolution of the tissue length is specified according to experimental

observations 203] 209]. Here, the evolution of the tissue boundary arises natu-

rally from the cell-scale processes of cell proliferation, mechanical cellular relaxation (Chapter
[T9l[159}[225]), and cell detachment.

To implement this model, we start with a cell-based discrete model, where we prescribe
individual cell-level properties, and then derive the corresponding tissue-level continuum partial
differential equation model. This approach extends previous studies (Chapters and
[19)[68|[157H159}{164}[165}[225)[258]) all of which consider mechanical cell movement, but do not

consider cell detachment driven by EMT. The continuum model is useful to analyse possible

behaviours of the model including tissue shrinkage, tissue homeostasis, and tissue growth
depending on the initial number of cells, mechanical cell properties, the rate of proliferation, and
chemical diffusivity. Importantly, we provide guidance when the discrete and continuum models
are accurate. To simulate the mathematical model numerically, we devise a new method to
incorporate chemical diffusion in an evolving population of cells with variable cells lengths.

This work is structured in the following way; we present the cell-based discrete model
(Section [5.3.1) and derive the corresponding continuum model (Section [5.3.2). Then using
the new discrete and continuum models we explore when tumours grow or shrink, and how
mechanical interactions and an EMT-inducing chemical could influence the rate of cell detach-
ment. To do so we consider different mechanisms in the models: cell-length-independent
proliferation mechanism and chemically-independent cell detachment (Section [5.4.1); cell-
length-dependent proliferation mechanism and chemically-independent cell detachment (Sec-
tion [5.4.2); chemically-dependent cell detachment driven by an EMT-inducing chemical which
diffuses slowly (Section[5.4.3), or which diffuses quickly (Section[5.4.4).
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5.3 Model description

In this section, we present the new discrete model of mechanical cellular relaxation, cell pro-
liferation, and cell detachment driven by a chemically-dependent EMT process in an epithelial
tissue. We then derive the corresponding continuum model. To simplify the model, we suppose
that linear diffusion is the key transport mechanism by which the chemical that induces EMT

is transported from the free boundary inwards through the cells in the epithelial tissue (Figure

51).

5.3.1 Discrete model

We consider a one-dimensional chain of cells to represent the cross-section of an epithelial
tissue (Figure [5.1). Each cell is assumed to act like a mechanical spring (Chapters [2} [3| and

[ [T9l[157H159}[198}[225]). The tissue has a fixed boundary at = 0 and a free boundary at
x = L(t) > 0. Cells undergo mechanical relaxation which results in changes in cell length and

corresponding movements of cell boundaries. Cell i, fori = 1,2,..., N(t), occupies the interval
x;i(t) < x < xiy1(t), where z;(t) and x;41(t) are the positions of the left and right boundaries
of the cell, respectively, so that cell i has length I;(t) = ;11 (t) — z;(¢). Each cell is prescribed
with cell stiffness k& > 0 and resting cell length a > 0. We assume that the motion of each cell
boundary is subject to mechanical interactions and occurs in a viscous medium, resulting in a
drag force with drag coefficient > 0 (Chapters [2} [3| and [4} [28][67}[157}[198]). Then, as cells
move in dissipative environments, the motion is assumed to be overdamped (Chapters
and[)} [67}[157]) and the cell boundary evolution equations are

% ~ 0, (5.3.1)
S = o) - fi) i= 1,2, NG, (5.3.2)
ndwfﬁ“ = —fn(t), (5.3.3)

where, for simplicity, we use f;(t) = k (I;(t) — a) to represent a linear Hookean force law, and
N(t) evolves in time due to proliferation and cell detachment.

We assume any cell in the tissue is able to proliferate via a stochastic cell proliferation
mechanism that may depend on cell length. We assume that cell i proliferates with probability
P(l;)dt in the small time interval [t, t + dt), where the function P(-) depends on the proliferation
mechanism considered, and ; is the current cell length (Figure [5.2b)). When a proliferation

event occurs in a cell of length ;, the cell divides into two cells of length [; /2, and any chemical
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Figure 5.1: Schematic for models of EMT and cell detachment. (a) Boundary cell detachment at
a constant rate. (b)-(c) Boundary cell detachment driven by chemically-dependent EMT with (b) low
diffusion and (c) high diffusion. The EMT-inducing chemical diffuses inwards from the external environ-
ment through the cell at the free boundary. In (b) with low diffusion the boundary cell contains most
of the EMT-inducing chemical whereas in (c) with high diffusion the chemical is spread throughout the
boundary and internal cells. Chemical concentration is shown with colouring: low concentration below
the cell-detachment chemical threshold (light red) to a higher concentration above the cell-detachment
chemical threshold (dark red). (d) Proliferation produces two identical daughter cells. Each daughter
cell mechanically relaxes to the resting cell length and the concentration changes accordingly.
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inside the cell is conserved and divided equally between the two daughter cells. The chemical
concentration subsequently dilutes as the daughter cells mechanically relax to their resting cell
lengths (Figure [5.1]d)).

We assume an external source of EMT-inducing chemical and suppose that linear diffu-
sion is the key transport mechanism by which the chemical is transported into and through the
epithelial tissue. To model linear diffusion we consider the chain of cells to be a non-uniform
lattice on which we can simulate a point-jump process for molecules of the chemical. As it is
computationally expensive to track many individual particles, we focus on the chemical con-
centration. In the epithelial tissue, each cell i has a chemical concentration ¢;(t) = M;(t)/1;(t),
where M;(t) is the number of molecules of the chemical in cell ; at time ¢, and [;(¢) is the length
of cell ¢ at time ¢. Therefore, the concentration in each cell is assumed to be well-mixed. Then

the equations governing chemical concentration are [252]

d dl
llg =- clditl + Ty ealy — TP erly, (5.3.4)
N—— - -
dilution diffusion
da di * + - - .
lig == cg + T cicilion — (T + T;7) eili + Ty cialivr, i=2,3,...,N —1,(5.3.5)
dilution diffusion
dCN le . )
ZNK =N +Ty_yen—1ln—1 —Tyenly+ S, (5.3.6)
dilution diffusion source

where T;= are left and right transition rates that model linear diffusion of chemical molecules
between neighbouring cells with diffusivity D, respectively. How these transition rates are
chosen requires great care and is detailed in Supplementary Material FA.2 where we introduce
a new method, called the Interval-Voronoi method. The dilution term in Equations (5.3.4)-
(5.3.6) represents the fact that chemical concentrations increase/decrease as the cell length
reduces/increases. To mimic a chemical diffusing into the tissue from an external source, we
assume that a constant number of molecules per unit time, S, is provided to cell N from the
external source. We further assume that the chemical cannot diffuse across the boundary at
the rear of the tissue (x = 0). This assumption corresponds to modelling only the right hand
side of an epithelial tissue where = = 0 is the middle of the tissue.

Given the chemical concentrations in each cell, we introduce cell detachment driven by
EMT which is a key feature of the discrete mechanical model. Here, we consider cell de-
tachment to be a two-step process. The first step models the EMT process itself as a cell-
state transition whereby cells acquire an invasive phenotype. The boundary cell gains the

invasive phenotype when its chemical concentration is above a constant threshold, C' (Figure
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[41][137}[226]. If at any time the chemical concentration drops below the threshold the
cell loses its invasive phenotype, which it can only regain once the chemical concentration
increases above C. The ability of the cell to gain and lose its invasive phenotype is associ-
ated with epithelial-mesenchymal plasticity [T10]. The second part of the process is where
the boundary cell, once it acquires the invasive phenotype, detaches from the tissue in
[t,t+dt) with probability w(cxy (t)) dt where cn (t) is the chemical concentration in the boundary
cell N at time ¢t. Once a cell detaches we no longer consider its dynamics and we assume it
moves away from the epithelial tissue.

As we are interested in whether tumours grow or shrink, we can consider the evolution of
the total number of cells, N (t), which depends on the balance between proliferation and EMT.
For an individual realisation of this discrete model, N (t) is expected to increase when

N(t)
> P(l) > w(ew). (5.3.7)

=1
We numerically simulate the discrete model governed by Equations (5.3.1)—(5.3.6), and
prescribe initial conditions for the cell positions, z;(0), the mechanical cell properties k£ and
a, drag coefficient n, as well as proliferation properties, and assume that there is initially no

chemical inside any cell in the tissue (Supplementary Material [5A.2).

5.3.2 Continuum model

We now derive the corresponding free boundary continuum model for cell detachment driven
by chemically-dependent EMT. Components of this model have been derived in our previous
studies, and where this is the case we state the equation and provide a reference to the reader
for full details (Chapters [2and [} [19}[157][158}[225]).

The cell density, q(x,t) > 0, which is the number of cells per unit length and the continu-

ous analogue of 1/1;, evolves according to the following nonlinear moving boundary problem

(Chapter A} [T58))

0q(x,t) 10%f(x,t) 1
= —_——— P L - -
5t P +q(x,t) at) 0 <z < L(t), (5.3.8)
mechanical relaxation proliferation

where f(z,t) = k (1/q(z,t) — a) is the continuous analogue of the discrete Hookean force law

and P(1/q(x,t)) is the continuous analogue of P(l;).

The fixed boundary condition at = 0, corresponding to Equation (5.3.1), is (Chapter[2and
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[157])

9q(0,1)
ox

=0, (5.3.9)
and the mechanical relaxation condition at the free boundary, z = L(t), gives rise to a nonlinear
boundary condition [T9][225]

1 Of(L(t),t)
2q(L(t),t) Ox

= —f(L(t),1). (5.3.10)

The boundary conditions in Equations (5.3.9) and (5.3.70) ensure that no cells are lost by
crossing the tissue boundaries but cells can still detach at the free boundary, x = L(¢). In
the continuum model this corresponds to loss of tissue material at a moving interface [34]. To
capture cells detaching from the tissue at x = L(t), we consider conservation of mass and

derive the following evolution equation for the free boundary (Supplementary Material [5A.1)

Lo 1 ofLen el 5511
dt nq(L(t),t) ox q(L(t),t) "~
—— —

mechanical relaxation cells lost due to detachment

The chemical concentration is governed by the following advection-diffusion equation

(89225

Jc(x,t)

g _ y9%c(z,t)
5 T gy W@ ez, t)) =D75e=, 0 <z < L), (5.3.12)

where D is the diffusion coefficient, and the cell velocity, u(z,t), determined from Equation
(©.3.8), is

1 Of(x,t)
nq(z,t) Ox

u(z,t) = . (5.3.13)

The boundary at x = 0 is fixed, and because there is no chemical transport across this

boundary in the discrete model, we impose the following no-flux boundary condition

0c(0,1)
ox

=0. (5.3.14)

At the free boundary, = = L(t), the only transport of chemical in the discrete model is the

supply of a constant number of molecules per unit time, S, from the external environment. The
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corresponding boundary condition at x = L(t) in the continuum model is

PO _ 5319

obtained by enforcing that the total flux of ¢(z, t) in the frame of reference co-moving with L(¢)
is equal to —S [225].

We supplement the continuum model with initial conditions for tissue length, L(0), density
q(z,0) for 0 < = < L(0), and chemical concentration ¢(z,0) for 0 < x < L(0). Then Equa-
tions (5.3.8)—(5.3.10),(5.3.11), and (5.3.12)—(5.3.15) are solved numerically using a boundary
fixing transformation [120] and an implicit finite difference approximation, see Supplementary
Material for further details.
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5.4 Results and discussion

The evolution of the number of cells in the epithelial tissue, N(¢), the length of the epithelial
tissue, L(t), and the number of cells that undergo EMT and detach from the epithelial tissue
are coupled. Biologically this coupling is of great interest. In the context of cancer, a primary
tumour site without EMT is a localised problem, whereas a single tumour site with EMT and
cell detachments may result in many secondary tumour sites that can be a greater problem as
90% of cancer related deaths are associated with metastatic spread [42]. We are interested
in how mechanical interactions influence EMT and subsequently how tumours grow or shrink.
Therefore, we choose parameters to explore the range of behaviours that our new mathemat-
ical model of EMT predicts. Further, as the continuum model is useful to analyse possible
behaviours, we seek to understand when the continuum model is a good description of the
underlying discrete model by considering initial populations with low numbers of cells. Our
parameter choices are also consistent with experimental observations that can vary greatly
depending on the cell type and driving mechanisms: a cell can proliferate on the order of once
every 12 hours to once every few days; EMT can occur over the course of hours, a few days [g],
or many days (e.g. 9-12 days [[112]); the rate of mechanical relaxation is faster than the rate of
proliferation and EMT, with n/k ~ 5—16 minutes being a typical experimental value ; and a

typical experimental value for the resting cell length being a ~ 10 um [68].

5.4.1 Cell-length-independent proliferation and chemically-independent EMT

The simplest model is chemically-independent cell detachment of the boundary cell at a con-
stant rate, w, with cell-length-independent proliferation for each cell at a constant rate, s (Figure
a),(b)). It is useful to first examine this problem with the continuum model. Conservation of
mass (Equation (5A.1.1)) gives a simple ordinary differential equation for the evolution of N(¢),

AN(¢)
dt

= BN (t) — w, with solution N(t) = % + <N(0) - ;) exp(ft). (5.4.1)

Then, depending on the initial number of cells, N(0), and the critical cell number, w/, there
are three possible long-term outcomes: i) N(¢) — 0 in finite time, which we refer to as extinc-
tion, when N (0) < w/f ;i) N(t) remains constant for all t when N (0) = w/g; i) N(¢) — occ as
t — oo when N(0) > w/f. It is clear from Equation that in all cases mechanical inter-
actions do not influence N(t). However, each cell mechanically relaxes towards its equilibrium
length as N (t) evolves over time. To capture the evolution of the tissue length, L(t), and cell
density, ¢(x,t) we solve the full continuum model, governed by Equations (5.3.8)-(5.3.10) and
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(5.3.17) (Figure [5.3). The total number of cells which detach grows linearly with time at rate
w for chemically-independent EMT when the tissue is not close to extinction, and plateaus if

extinction occurs (Figure BA.4).

(a) Cell detachment rate dependent on chemical concentration, c.
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Figure 5.2: Cell detachment driven by chemically-dependent EMT and proliferation mechanisms. (a)
Cell detachment mechanisms: cell detachment at a constant rate w independent of chemical concen-
tration (black); cell detachment at a constant rate w/(1 — ¢) when the concentration, ¢, is above a
concentration threshold, C (red). (b) Cell-length-dependent proliferation mechanisms: independent of
cell length at rate 5 (black); linearly dependent on cell-length (blue) defined by ensuring P(0) = 0 and
P(a) = . In this main manuscript we set w = 0.1,¢ = 0.9,C = 500 and 5 = 0.0025, and vary ¢ in
supplementary material.

In general, the solution of the continuum model provides an accurate approximation for the
evolution of N(¢), L(t) and ¢(z,t) when compared to appropriately averaged quantities from
many discrete realisations (Figures [5.3] [pA.5{5A.8). This correspondence between the dis-
crete and continuum model holds provided that the rate of mechanical relaxation, determined
by the ratio of cell stiffness to drag coefficient, k/n, is sufficiently fast relative to the rate of
cell proliferation, see Section 3.3 of Chapter [3|[158]; and that N(¢) is sufficiently large to de-
fine a continuum, see Supplementary Material However, when N(0) is close to w/f3
the behaviour of the discrete and the continuum model may differ. Extinction behaviour of the
continuum model is deterministic and solely determined by N(0), whereas stochastic effects
in the discrete model imply that different realisations for the same N (0) may sometimes result
in extinction and sometimes in unbounded growth (Figures [5.3|c), Equation (5.3.7)) [220]. To
quantify this difference between the models, we simulate many identically-prepared realisa-

tions of the discrete model and calculate the survival probability of the tissue: the probability
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that an individual realisation is not extinct at a certain time. By comparing the survival prob-
ability of the tissue from the discrete and continuum models for a range of N(0), Figure
shows that when N(0) is close to w/8 and when N(0) is close to extinction, results from the

continuum model may not reflect the behaviour of individual discrete realisations.
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Figure 5.3: Chemically-independent cell detachment at a constant rate with a cell-length-independent
proliferation mechanism. (a)-(b) Kymographs showing evolution of cell boundaries (black curves, note
bifurcations when cells divide) for one discrete realisation with cell density, ¢(z,t), colouring for (a)
N(0) = 20 and (b) N(0) = 60. Note domain size in (b) is double that of (a). (c)-(d) Three initial cell
populations starting at mechanical equilibrium, L(0) = N(0)a. For N(0) = 20, 60 the average of 2000
discrete realisations (blue) are compared with the continuum model (green). For N(0) = w/3 = 40, 10
discrete realisations (grey) are compared with the continuum model (green). (c) Evolution of number of
cells, N(t). (d) Evolution of tissue length, L(¢). Mechanical parameters: k = 1,a = 0.1, = 1.
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Figure 5.4: Survival probability of the tissue, S, for the cell-length-independent proliferation mechanism
and chemically-independent cell detachment with N(0) = 1,2,...,80. Comparison between the deter-
ministic continuum model (red solid line), and the average of 2000 realisations of the stochastic discrete
model (shading). Here, w/g = 40.
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5.4.2 Cell-length-dependent proliferation and chemically-independent EMT

With a constant cell-length-independent proliferation rate, N (0) determines the long-term so-
lution of the continuum model, whereas with cell-length-dependent proliferation we must also
consider the initial cell lengths, 1;(0), resting cell length, a, and the ratio of cell stiffness to
drag coefficient, k/n. If we consider a linear proliferation mechanism P(l;) = Bl;/a, shown
in Figure [5.2b), then the critical tissue length is wa/B (Equation (5.3.7)). Therefore in this
case mechanical interactions between the cells are important. Parameter combinations that
lead to extinction with cell-length-independent proliferation may now grow without bound with
cell-length-dependent proliferation (Section FA.4.3). Similarly, parameter combinations that
lead to unbounded growth with cell-length-independent proliferation may now lead to extinc-
tion with cell-length-dependent proliferation. Further, the model predicts that compressed tis-
sues can go extinct faster (Figure [5.5(a),(c),(e)) than stretched tissues (Figure [5.5(b),(d),(f)).
Good agreement between the continuum model and appropriately averaged quantities from
many discrete realisations is also observed when considering cell-length-dependent prolifera-
tion (Supplementary Material 5A.4.7).

When we consider cell-length-dependent proliferation, the long term outcome of the model
depends upon the mechanical properties, k/n, and rate of cell proliferation and detachment. In
general, when k/n is large compared to 3, the outcome of the model is similar to the simpler
cell-length-independent proliferation case. As before, the solution of the continuum model is
a good approximation of appropriately averaged data from the discrete model, except when
N(t) is low (Figure [5.5). However, whereas for cell-length-independent proliferation stochastic
effects are important when the initial number of cells N(0) is close to w/g, for cell-length-
dependent proliferation stochastic effects are important whenever the current tissue length,
L(t), is close to the critical tissue length, wa /3, as the epithelial tissue may go extinct in some
realisations while the epithelial tissue may grow in other realisations (Supplementary Material
[BA.4.3). As we are considering chemically-independent EMT the total number of cells which

detach grows linearly with time at rate w when the tissue is not close to extinction (Figure[5A.4).
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Figure 5.5: Chemically-independent cell detachment at a constant rate with a linear cell-length-
dependent proliferation mechanism. Two initial cell populations with N(0) = 20, the first uniformly
compressed with L(0) = 1 and the second uniformly stretched with L(0) = 4. (a)-(b) Kymographs with
density, ¢(z, t), colouring. (c)-(f) The average of 2000 discrete realisations (blue) are compared with the
continuum model (green). (c)-(d) Evolution of total cell number, N(t). (e)-(f) Evolution of tissue length,
L(t). Mechanical parameters: k = 1,a = 0.1, = 1. Critical tissue length is wa/g = 4.
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5.4.3 Chemically-dependent EMT with small diffusivity

We now consider a general EMT-inducing chemical, with TGF-3 being one such example of
many candidate signalling molecules. As different EMT-inducing chemicals may have differ-
ent diffusivities, we will consider a range of possible diffusivities from a very small diffusivity
to assuming the chemical in the tissue is in diffusive equilibrium at all times. To begin, we
assume very small diffusivity and cell-length-independent proliferation. Assuming that the tis-
sue initially contains no chemical, the chemical is provided to the boundary cell only, and
small diffusivity, then the chemical is mostly concentrated in the boundary cell. To compare
the chemically-dependent cell detachment model with the chemically-independent cell detach-
ment model (Section [5.4.1) we choose parameters so that the average rate of cell detach-
ment is the same in both models, provided the boundary cell is close to its resting cell length.
Chemically-dependent cell detachment is a two-step process: i) the boundary cell gains an
invasive phenotype when its chemical concentration is above the chemical threshold, C, ii) the
boundary cell detaches. So we introduce a parameter ¢ € [0, 1] which defines the ratio of the
average time in process i) as ¢/w and the average time in process ii) as (1 — ¢)/w (Figure
[6.2). Note that ¢ = 0 corresponds to the chemically-independent model we explore in Sections
As before, the total number of cells which detach grows linearly with time at rate w
when the tissue is not close to extinction (Figure [5A.4).

We find that agreement between results from the discrete model and corresponding contin-
uum model is not as accurate as before for large values of ¢ (Figures[5.6{a),(d),(g) for ¢ = 0.9,
Supplementary Material fA.4.5). In the discrete model we assume that a constant number
of molecules of the chemical are supplied to the boundary cell (Equation (5.3.6)), to mimic
a chemical diffusing in from the external environment, and assume that the concentration in
every cell is well-mixed. However, for low diffusivities, here D = 10~?, the well-mixed assump-
tion is not valid. So the rate of cell detachment, w(cy(t)), should be updated to account for
intracellular chemical concentration gradients. In contrast to the discrete model, the continuum
model does capture intracellular concentration gradients and the rate of cell detachment is de-
termined by ¢(L(T), t), which is the concentration at the right edge of the boundary cell. With
low diffusivity, the chemical concentration is localised to L(t) in the continuum model, rather
than spread throughout the cell, so the continuum model reaches the concentration threshold
faster than realisations of the discrete model. This explains the difference in Figures[5.6|(d),(g).

When ¢ is small or diffusivity is increased these differences are smaller (Supplementary Mate-

rial 5A.4.6}5.4.4).
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5.4.4 Chemically-dependent EMT with higher diffusivity

Higher chemical diffusivity results in the boundary cell having a lower chemical concentration,
on average, than the same simulation with lower chemical diffusivity. This means that the
time for the first cell to undergo EMT and detach increases (Figures [5.6b),(c)). The delay
of the first cell detachment can be sufficient to result in a transient rise in total cell number.
However, as diffusivity is high the chemical concentration inside internal cells is close to the
chemical concentration inside the boundary cell. Therefore, after the first cell detaches the
new boundary cell may already be above or close to the concentration threshold, and hence
quickly gains the invasive phenotype. This can lead to a rapid sequence of cell detachments,
which was not seen with the models in the previous sections (Figures [5.6{b),(c), BA.4fe)-(g)).

Results in Figures [5.6]e),(f),(h),(i) show good agreement between the continuum model
and the appropriately averaged quantities from many discrete realisations. The difference in
Figures[b.6)e),(h) for ¢ > 250 is due to low N (¢) near extinction (Section[5.4.1] Supplementary
Material 5A.4.4). The difference in Figures [5.6]f),(i) at ¢ > 200 is due stochastic effects in the
discrete model, including the number of cells and tissue length. These are more prominent for
D =1 (Figures f),(i)) in comparison to D = 10~3 (Figures e),(h)) due to the increased
time to reach the concentration threshold (Supplementary Material 5A.4.5).

Special cases assuming the chemical in the tissue is at diffusive equilibrium at all times and
instantaneous mechanical relaxation result in four possible behaviours (Supplementary Mate-
rial (5A.5)): unbounded tissue growth without EMT and cell detachment; unbounded tissue
growth with some EMT; eventual tissue homeostasis and constant EMT; and eventual tissue

extinction due to EMT.
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Figure 5.6: Increasing diffusion delays first EMT. Cell detachment driven by chemically-dependent EMT
with varying diffusivities and a cell-length-independent proliferation mechanism. Cells are initially at their
resting cell lengths with initial cell populations N(0) = 20. Kymographs with chemical concentration,
c(z,t), colouring shown for (@) D = 10~>, (b) D = 1072, (c) D = 1. (d)-(i) The average of 2000 discrete
realisations (blue) are compared with the continuum model (green). (d)-(f) Evolution of total cell number,
N(t). (g)-(i) Evolution of tissue length, L(t). Mechanical parameters: k =1,a =0.1,7 = 1.
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5.5 Conclusion

In this work we seek to explore how mechanical interactions influence the evolution of an ep-
ithelial tissue. Using our mathematical model, we ask when do tumours grow or shrink, and
how mechanical interactions and an EMT-inducing chemical could influence the rate of cell
detachment. Starting with a stochastic cell-based discrete model describing mechanical relax-
ation, cell-length-dependent proliferation, and cell detachment driven by chemically-dependent
EMT, we derive the corresponding deterministic continuum description which takes the form of
a novel nonlinear free boundary problem. In contrast to previous free boundary models we de-
rive the boundary condition from cell-level biological processes and incorporate EMT. Both the
discrete and continuum models useful information: discrete models show the important role
of stochastic effects while continuum models help classify possible behaviours. Our results
show good agreement between the continuum model and appropriately averaged quantities
from many discrete realisations. However, as can be expected, there are occasions when the
deterministic continuum model does not capture the fact that, due to stochastic proliferation
and EMT in the discrete model, different identically prepared individual discrete realisations
may result in different long-term behaviour.

Our models suggest that the coupling of mechanical interactions with EMT is important,
can change the probability of long-term extinction significantly, and give rise to different rates
of cell detachment [T2}[187]. Using our model we postulate that to prevent cell detachment
driven by EMT and delay the start of the metastatic cascade, one could chemically alter the
speed of mechanical relaxation to encourage the tissue length to increase and hence cause
the EMT-inducing chemical concentration to decrease. However, if the tissue length increases
then proliferation may be more likely and the number of cancer cells in primary tumour would
increase, which is also not desirable. Therefore, there is a delicate trade off between pro-
liferation and EMT that should be considered when seeking to prevent cancer development.
Furthermore, the model predicts that if EMT is delayed then the tissue may rapidly collapse due
to many cells detaching in quick succession, which is undesirable as it may encourage metas-
tasis. In contrast, for wound healing we may prefer cell-detachment driven by EMT and more
proliferation to encourage the wound to heal faster. It will be useful to explore these ideas by
extending this model to track individual cells or clusters of cells that detach from the tissue
in a two-regime model [216] or multi-organ model [69][70], and incorporating mesenchymal-
epithelial transitions (MET) [84[T02}[115]. Furthermore, the time taken for a cell to proliferate
can be on the order of once every 12 hours to once every few days and EMT can occur over

the course of hours, a few days [6], or many days (e.g. 9-12 days [112]), depending on the cell
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type and driving mechanisms. Therefore, the critical cell number w/3 and critical tissue length
wa/ wm we consider in this work are of a similar order of magnitude to that expected in vitro
and may be interesting to test experimentally.

The mathematical framework that we develop here, and in related studies (Chapters
and [4] [19[157H159}[225]), is well-suited to incorporate additional biological mechanisms
and explore different modelling assumptions. One modelling assumption we could change
would be to allow the EMT-inducing chemical to diffuse across the boundary at the rear of
the tissue, which may prevent a build up of chemical. Introducing intracellular diffusion in the
discrete model would also resolve the issue around the well-mixed assumption not being valid
for low diffusivities. We also assume, to illustrate a potential role for mechanochemical cou-
pling, that a single chemical drives EMT. In reality, many biological processes at the level of
proteins, mMRNAs, and miRNAs occur and it may be interesting to incorporate regulatory net-
works which govern these processes into each cell in the discrete model [T37][226]. While
linear diffusion of the EMT-inducing chemical between cells is arguably the simplest approach
to include chemical transport and some experimental evidence exists for intercellular chemical
transport [T13], other mechanisms may be more biologically realistic, such as chemicals dif-
fusing externally and being uptaken by cells and cell adhesion regulated by interactions
between E-cadherin and j-catenin [187]. It is an interesting question to ask whether other
transport mechanisms are well approximated by the linear diffusion model we consider here.

The one-dimensional approach taken in this work has many advantages in its predictive
power, interpretability, and relative computational simplicity in comparison to two- or three-
dimensional models. Furthermore, cell-length-dependent proliferation may be thought of as an
approximation for cell-volume-dependent proliferation which occurs for cells that move in three-
dimensional environments. However, real cells can also spread without changing volume, so it
may be beneficial to explore the role of the cell cycle in this one-dimensional framework [234]. A
significant extension of this work would be to consider higher dimensions. The discrete model
could be extended by considering a cell-centre or vertex model which introduces questions
regarding cell shape and how neighbours can be identified, along with increased computational
expense [67][175}[179]. A corresponding continuum model in higher dimensions is less clear.
The one-dimensional model enforces an ordering of neighbouring cells, which is important
when deriving a continuum model [68}[T63]. However, in higher dimensions cells can change
their neighbours which poses significant challenges [68][163]. We leave this extension for future

consideration.
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5A.1 Continuum model: Evolution of free boundary equation deriva-

tion

The discrete model allows for cells to detach at the free boundary, x = L(¢). In the continuum
model this corresponds to loss of tissue material at a moving interface [34]. By considering
conservation of mass for the total number of cells, N(t), the rate of change of N(¢) due to

proliferation and invasion is

AN(t) _ /m w=L() o) P<

=0

) dz — w(e(L(t),t). (5A.1.1)
~————
loss due to cell detachment

1
q(z,1)

growth due to proliferation

The rate of change of N(¢) can also be written in terms of the cell density, ¢(x, t), as follows

dN(2) d (
dt dt

(25O (a8 dm) . (5A.1.2)

=0

Differentiating the right hand side of Equation (5A.1.2) with respect to ¢t and applying Equation
(5.3.8) for the cell density and Equation (5.3.9) for the boundary condition at x = 0 gives
dN() — arw

o= g(L(t),t) — L2LZ00 (5A.1.3)

—i—ff::OL(t) q(z,t)P (q(;t)) dz.

Equating (5A.1.1) and (5A.1.3) and rearranging we obtain evolution of the free boundary equa-

tion

dL(t) 1 [ 10f(L(t),1)

at  q(L(t),t) |n o= —w(C(L(t)J)]- (5A.1.4)

Substituting Equation (5.3.10) into Equation (©A.1.4) we can obtain a different form for the

evolution of the free boundary equation as

dL(t) k(s(t),t) 1 1 8‘1(”3’”] (5A.1.5)

p— L _— _
at ; {“ W0 = JT@0) ~ 9@ 0° oa
mechanical relaxation
w(c(L(t),t)
q(L(t),t)
N —’
loss due to cell detachment
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5A.2 Numerical methods: Discrete model

The key technical challenge to overcome to numerically simulate the discrete model concerns
how to implement linear chemical diffusion in an evolving population of cells with variable cells
lengths. This is the primary focus of the first half of this section. Previous models have imple-

mented diffusion on growing domains [20][48}[49}[203}[207H209][252], however, what is unique
to this work is that we are interested in the chemical concentration inside individual cells when

the positions of cell boundaries are known and evolve in time. Furthermore, previous studies
tend to consider uniform growth throughout the tissue whereas here, due to mechanical inter-
actions and proliferation, we have non-uniform growth throughout the tissue. As we will show

these complications requires a new numerical method.

To model the diffusion of molecules of a chemical we have a choice between microscopic or
mesoscopic individual-based models or macroscopic population-based models. Microscopic
individual-based models are often posed as a population of particles undergoing Brownian
motion. Mesoscopic individual-based models are often posed as a population of particles
undergoing a random walk on a lattice or as a position-jump process on a lattice. However,
individual-based models tend to be more computationally expensive than population-level mod-
els and can be mathematically intractable. Macroscopic approaches can be simpler to write

down and are often easier and faster to simulate for a large number of particles.

Macroscopically, linear diffusion of particles on a fixed domain, 0 < = < L, can be modelled

with the following classical partial differential equation

Jc(x,t) D82c($, t)

where ¢(z,t) is the particle density, or equivalently the chemical concentration, and D is the
macroscopic diffusion coefficient. Whereas on a domain whose length, L(¢), evolves in time,
conservation of mass arguments and applying Reynolds transport theorem gives the following
partial differential equation for the evolution of ¢(z, t), [20]

Oc(z,t)
ot

0?c(x,t)

0
o (u(z,t)c(z,t)) = D ox?

0<x<L(t), (5A.2.2)

where u(x,t) is a velocity field prescribed by domain growth 252]. In this work,
Equation (5A.2.2) is the same as Equation (5.3.13) in the main manuscript with u(x,t) =

1/(nq(z,t)) 0f(x,t)/0x determined by mechanical interactions between the cells.

Previous studies have demonstrated that a stochastic individual-based model incorporating



CHAPTER 5A. SUPPLEMENTARY MATERIAL 181

domain growth, taking the form of a position-jump model on a uniform lattice, is equivalent to
the continuum model in Equation [20]. However, domain growth was implemented by
instantaneous doubling and dividing of underlying lattice sites which always results in a uniform
lattice, corresponding to all cells have the same length at all times. This is not the case for this
work. We obtain a non-uniform lattice, as cell lengths vary due to the effects of mechanical
interactions between cells and proliferation. Therefore, to discuss the method we will focus on
a non-uniform lattice and initially assume that positions of the cell boundaries are fixed and

known.

To model diffusion on a non-uniform lattice Yates et al. make clear that one must be
careful, and suggest two methods which we refer to as method A and method B. To explain
the methods we first state the two key sets of points: i) positions of cell boundaries, x; for
i=1,2,...,N +1 (represented as circles in schematics in Figures B.]5AT}BA.J); ii) resident
points, y; for ¢ = 1,2,..., N, satisfying z; < y; < z;11, which defines the location in cell i
where the particles of the chemical are considered to be positioned (represented as crosses in
schematics in Figures BA.T{5A.3). In method A (Figure[5A.1fa)), Yates et al. [252] assume the
resident points, y;, are chosen first and then the cell boundaries, z;, are defined in a Voronoi
neighbourhood sense: a point is in cell 7 if it is closer to the resident point associated with cell
i, given by y;, rather than any other resident point y;. They show this method can be used
to accurately model linear diffusion due to the Voronoi partition (see Supplementary Material
Section 1 of Yates et al. [252]). However, in this work the positions of the cell boundaries are
already known from the mechanical interactions (Equations (5.3.7)-(5.3.3)) so we cannot use
method A and instead consider method B. In method B (Figure FA.1|b)), Yates et al.
first prescribe the position of the cell boundaries, x;, which is what we require, and then they
choose the resident points to be the position of the centre of cell 7, so y; = (z; + zi+1)/2. They
show this method does not accurately model linear diffusion as there is not a Voronoi partition.
When all cells are the same size, resulting in a uniform lattice, methods A and B are equivalent.

Before proceeding with our new method, which combines and extends methods A and
B, we briefly discuss the underlying microscopic diffusion model and how it relates to the
mesoscale position-jump process model of diffusion [252]. In the microscopic model of diffu-
sion, the position of an individual particle which undergoes Brownian motion is governed by a

stochastic differential equation,
dX(t) = v2D dW,, (5A.2.3)

where dW; is a standard Wiener process and D is the macroscopic diffusion coefficient. For
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Figure 5A.1: Different methods to model linear diffusion for variable cells sizes. (a) Method A: define
resident points, y;, first and then define cell boundaries, z;, to form a Voronoi partition. (b) Method B:
define cell boundaries first and then define resident points at the cell centres. (c) New Interval-Voronoi
method: define cell boundaries first and then choose resident points to define a Voronoi partition. Circles
represent cell boundaries, x;, and crosses represent resident points, y;. Shown for N = 5 cells.
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the mesoscale position-jump process model of diffusion we seek the rates at which a particle
at resident point, y;, moves to the neighbouring left or right resident points at y;_1 or y;.1,
respectively. These transition rates, 7=, can be found by initialising a particle at y; solving a
first passage time problem on the domain y;_1 < = < y;41 [190][252]. Then the transition rates

are [B9[252]

T - m (5A.2.4)
TF = (yiﬂ_yl_)?(iﬁyFU i=2,3,...,N—1, (5A.2.5)
T, = (yifyifl)%£+l+yifl) i=23,...,N—1, (5A.2.6)
Ty - (yN*nyl)(Q(L(g)lzyN)erN*nyl)7 (5A.2.7)

where D is the macroscopic diffusion coefficient. When all cells are the same length, [, these

transition rates simplify to D /i?.

To accurately model linear diffusion in our work we combine and extend methods A and
B. Specifically, we first define the positions of the cell boundaries, z;, and then we choose the
resident points, y;, so that the position of the bisection of neighbouring resident points is the
position of a cell boundary, i.e. choose y; such that (y; +vi+1)/2 = x; fori = 2,3, ..., N (Figure
[BAd|c)). This results in a Voronoi partition on the set of y;, where the edges of the Voronoi
partition coincide with the cell boundaries. We now explain how to choose the y; in such a
manner by following Figure 5A.2] We assume an initial cell configuration (Figure FA.2a)) and
will work from the leftmost cell to the rightmost cell. Initially, the resident point of the leftmost
cell could be placed anywhere in this cell, which we call the possible region of the first cell and
show in green (Figure BA2[b)). Next we reflect the possible region of the first cell about the
right boundary of the first cell, and colour this yellow (Figure BA.2|c)). Then intersecting the
reflected possible region of the first cell with the interval occupied by the second cell gives the
possible region for the second cell, which we indicate in green (Figure FA.2(d)). We repeat
until reaching the rightmost cell (Figure [5A.2{e)-(h)). Given possible regions for all of the cells
we choose the resident point of the rightmost cell to be the midpoint of the possible region of
the rightmost cell (Figure [5A.2(i)). Then reflecting the resident point about the left boundary of
the rightmost cell we obtain the location of the resident point of the penultimate cell. We repeat
until we have obtained the resident points for all cells (Figure BA.Zfj)). This method gives
us a set of resident points which can be used to accurately model linear diffusion. However,
this method only works when a Voronoi partition can be defined, which occurs when cells are

similar lengths.
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Figure 5A.2: Schematic for Interval-Voronoi method for cells of similar size. Circles represent cell
boundaries, z;, crosses represent resident points, y;, and green represent possible regions for a cell
where a resident point could be placed. Details discussed in the text.

Depending on the configuration of the positions of the cell boundaries it is not always pos-
sible to define the resident points as above. For example, following Figure [5A.3] the possible
regions for the first three cells can be defined as before (Figure pA.3{a)-(f)). However, when
we reflect the possible region of the third cell and intersect this with the interval occupied by
the fourth cell we obtain an empty set. Therefore, there is no location in the third cell where
we will be able to place a resident point to define a Voronoi partition. To resolve this problem,
we now divide the third cell into two compartments (Figure FA.3|h)). To do so, we first assume
that the current possible region for the third cell is now the possible region for the left com-
partment of the third cell. Then, we choose the position of the compartment boundary which
divides the cell (red-dashed line in Figure [FA.3|h)) so that the position of the right boundary
of the right compartment of the third cell is equal to the position of the right boundary of the
third cell, the possible region of the left compartment of the third cell does not overlap with the
possible region of the right compartment of the third cell, and the possible region of the right
compartment of the third cell is maximised. In Figure FA.3|h) this corresponds to dividing the
cell into two compartments of equal length. We can then proceed as before (Figure BA.3|i)-
(j))- We can then define resident points for each compartment and subsequently for each cell
(Figure [pA3|k)). When numerically simulating the discrete model, as described further be-

low, we update the chemical concentration using a well-mixed assumption at each time step



CHAPTER 5A. SUPPLEMENTARY MATERIAL 185

so this method does not result in intracellular chemical concentration gradients. This a valid
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Figure 5A.3: Schematic for Interval-Voronoi with compartments per cell. This method is required when
a Voronoi partition cannot be defined on the initial cell configuration, which occurs when cells lengths
are not similar. Circles represent cell boundaries, z;, crosses represent resident points, y;, green rep-
resent possible regions for a cell where a resident point could be placed, red-dashed represents the a
compartment boundary within a cell. Details discussed in the text.

Being able to define a Voronoi partition is necessary [252] but results from simulations
show that it is not always sufficient to accurately model linear diffusion. The distances be-
tween neighbouring resident points should also be the same order of magnitude throughout

the population. If we suppose the resident points are y; fori =1,2,..., N then if

logyg (Max({yi+1 —yi:i=1,2,...,1 —1})) (5A.2.8)

—logig (Min({yit1 —yi:i=1,2,...,N —1})) <,

the distances between neighbouring resident points are approximately the same order and we
can proceed. The condition in Equation (5A.2.8) and the value v = 0.8 were found to be good

choices for results in this work. If the condition in Equation (5A.2.8) is not satisfied we introduce
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a maximum compartment length equal to half of the minimum length of the current cell sizes.
Then for any cells whose length is greater than the maximum compartment length, we divide
those cells into compartments so that the maximum length of any compartment is less than
the maximum compartment length. We then determine the resident points as above.

The method described above, which we name the Interval-Voronoi method, can now be
used to accurately model linear diffusion on a fixed domain with variable cell lengths. In this
work, all of the cell boundaries, and consequently the length of the domain, L(t), are evolving
in time. However, when we numerically simulate a single realisation of the discrete model we
discretise time with a constant time step At. Then for each time interval [¢,t + At) we assume
the cell boundaries are fixed and the domain is fixed and apply the Interval-Voronoi method.
Further details are now shown.

Let us consider a single realisation of the discrete model. The epithelial tissue is initialised
with N cells each with cell stiffness k& and resting cell length a. The position of each cell
boundary x;(t) for i = 1,2,..., N is defined. Every cell in the tissue is prescribed with the
same proliferation mechanism and proliferation parameter, 5. The chemical concentration is
initially set to zero in each cell. To simulate the model, we discretise time with a constant
time step A¢. Then for each time interval [¢,t + At) we: i) update cell positions according
to mechanical interactions; ii) update the chemical concentrations in each cell; iii) implement
proliferation or cell detachment if it occurs.

We update the positions of each of the cell boundaries, z;(t), by integrating Equations

(5.3.1)-(5.3.3) using a forward Euler approximation,

21 (t+At) = 0, (5A.2.9)
At

€X; (t—l-At) = x; (t) + ﬂ[k (xi-i-l —x; — a) (5A210)
—k(xi—xi_l—a)], i:2,...,N—1,

At
41 (t+AL) = zyg1(t) — 7k<xN+1 —zy —a). (BA.2.11)

Next we seek to update the chemical concentration by applying the Interval-Voronoi method.
Using the updated positions of cell boundaries, z;(t + At) fori =1,2,..., N + 1, we determine
the resident points y; fori = 1,2,..., N. Then we can calculate the boundaries of compart-
ments #; for i = 1,2,...,N + 1, in a Voronoi neighbourhood sense, where N > N is the
number of resident points. If the Interval-Voronoi method requires at least one cell to be di-
vided into compartments then N > N in order for a Voronoi partition to be defined. Then given

the resident points we determine the transition rates, TZjE in terms of compartment lengths,
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~

Li(t + At) = T41(t + At) — 2,(t + At). We now have the information required to update the
chemical concentration for the cells. First we update the chemical concentration for all com-

partments, which we denote as ¢;(t) fori = 1,2, ..., N by integrating Equations (5.3.4)-(5.3.6)
using forward Euler approximations,

ér(t+ At) = ér(t) + At [ll(tim) (T;ég(t)ig(t + At) =T e (8 (t+ At))} (5A.2.12)
al (i -
AT (ll(t A - ll(t))
ei(t+ At) = éi(t) + At [ r (ti ) <TAZ.+ Wi (i1 (t+ At) (5A.2.13)

- (T[ + Tj) ()it + At) + T i ()i (t + At)>]

A

_%)) (Zi(t+At)_ii(t)>a 1=2,3,...,N—1,

Li(t+At
et +At) = en(t) + At { T ran <T§_16N_1(t)z}v_1(t +At) = Tyen()in(t + At)ﬂ
Gy . _SAt
_fN(];+At) (lN(t +At) ZN(t)> T I t+AD (bA.2.14)

If the Interval-Voronoi method does not introduce any compartments per cell, i.e. if N = N,
then T = TF, [;(t + At) = I;(t + At), and &(t) = «(t). Hence, if N = N, using Equa-
tions (A.2.13)-(BA.2.14), we directly determine the chemical concentrations c;(t + At) for

i =1,2,...,N and we can proceed to incorporating if a cell proliferation or detachment event

occurs in the time step. However, if N > N before proceeding we apply the well-mixed as-
sumption to each cell. Specifically, if the Interval-Voronoi method introduces j compartments
into cell 7 with concentrations ¢, (t + At), éxt1(t + At), ..., éxyj—1(t + At) then the chemical

concentration of cell i is set to be ¢;(t + At) = (1/1;) Y7, &(t + At)l;(t + At).
1

T

Next, given the cell positions and chemical concentrations at time ¢ + At, we determine
whether a cell proliferation event or a cell detachment event occurs during the time interval
[t,t + At). Analogous to Murphy et al. we proceed using rejection sampling where
we generate three independent random numbers from a uniform distribution, r; ~ U0, 1], 79 ~
Ul0,1],73 ~ UJ[0,1]. Then a cell event, which could be either a proliferation event or a cell
detachment event, occurs when

N(t)

ri <w(ew)At+ Y P(IY)At. (5A.2.15)
=1
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Given that a cell event occurs, a proliferation event occurs if
N(t)
> P(Y)
ry < — i=1 (5A.2.16)

®) ’
P(Z;N) + w(cN)
i=1

Otherwise we have a cell detachment event and we remove the boundary cell. If a proliferation

event occurs, to determine which cell is proliferating we find the index 5 which satisfies

J Jj+1
> PaY) > P
=1 =1
oSSy
P(Y) 5> PY)

@
Il
i

=1

(5A.2.17)

We then divide the parent cell into two equally sized daughter cells with the same chemical

concentration and mechanical properties as the parent cell.

We repeat the above steps for each time step until the final time. This method requires

that at most one cell event can occur within each time step so At should be chosen sufficiently

small.
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5A.3 Numerical methods: Continuum model

The continuum model is solved numerically using a boundary fixing transformation [120], finite
difference approximations, and the Newton-Raphson method with adaptive time stepping.
Full details now follow.

For completeness, we rewrite the governing equations for the cell density, ¢(z,t), from
Equation and chemical concentration, ¢(x,t), from Equation (5.3.12), where we have
used the definitions of f(z,t), and u(z,t) from Equation (5.3.13),

Ut e () e

02 [T\l 1) a(x,1)
oc(x,t) 0 1 0 1 _O%c(w,t)
o + 7 <77q(:c,t)8x {k (q(:l:,t) - a)] c(x,t)) =D 92 0 <z < L(BA.3.2)

These governing equations are solved with the following boundary conditions from Equations

3(1 {k (q(o1 t) Q)] =0, (5A.3.3)
1

(i) =t bt )] GAsa

80((9(3; 2 =0, (5A.3.5)

DaC(LaSm =5 (5A.3.6)

and the boundary position, L(t), evolves according to Equation (5.3.11) and we can apply
Equation (5A.3.4) to give

dL(t) o 1 w
7 =2 (s - o) - e (5A-3.7)
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Equations (5A.3.1)-(5A.3.7) form a moving boundary problem for coupled non-linear partial

differential equations. To proceed we apply a standard boundary fixing transformation [[120] by
setting & = x/L(t) to transform the evolving domain 0 < x < L(t) to a fixed domain 0 < ¢ < 1.

Equations (5A.3.1)-(56A.3.7) then become

aq(é-?t) _ 1 82 1 1
ot~ Iomoe [’f <q(£,t) —a)] +q(£,t)P(q(§7t)) (5A.3.8)
dL(t) 9q(&,t
+% dr(f) qég)v 0<&<,
dc(&,t) 1 o (_1 0 1 D 92c()
81‘, o _L(t)237£ (7711(5775)875 k q(&,t) - a)} C(§7t)> + L(t)2 352 (5A39)
L

with the following boundary conditions

g | (qoa )] -0 PAS10)
k (q(i 5 a> = st [F (i — o) (5A.3.11)
acgz, 2 _o, (5A.3.12)
Llé) 3‘/’215 t) _— (5A.3.13)
and the boundary position, L(t), evolves according to
dlc’lit) =2 (Ll —a) - 8. (5A.3.14)

Next, we discretise the domain 0 < £ < 1 with a uniform mesh with spatial step A¢ and use
the subscript j = 1,2, ..., J to represent the index of the spatial nodes. We discretise time with
a uniform mesh with time step At and use the superscript n = 1,2, ..., T to represent temporal
step. Second-order spatial derivatives are approximated by standard central differences. First-
order spatial derivatives are approximated by standard upwind differences. A standard implicit

finite difference approximation is used to approximate temporal derivatives.

Equation (5A.3.14) governing the evolution of L(¢) becomes

Ln+1 — " +

—2hat <1 a> _ Al (5A.3.15)

n q -

Finite difference approximations of the cell density equations give, for internal spatial nodes



CHAPTER 5A. SUPPLEMENTARY MATERIAL 191

0= ¢ +q) (5A.3.16)
S [k: (e =) =2 (=) 4 (e —a) ] (5A3.17)

J— J J
+ALP (q;L) + saaperr (L = L) (qyjll - qy“) . (5A.3.18)

At £ = 0, corresponding to spatial node 1, the cell density is updated with

0=k (7}+1—a>+k(,}+1—a>. (5A.3.19)

q1 D)

At ¢ = 1, corresponding to spatial node J, the cell density is updated with

1 1 1 1

To proceed we calculate the velocity at each node, given by

1 1 1 & Lrtt—pn
vy = ~ k< - a>k< - a>} - , (5A.3.21)
Aéngit (Lr+1)2 [ @t gt Lr+t At

1 1 1 £ Lntl—n
v; = k| —5—a|—k|—-—75—0a]| - , (5A.3.22)
T 208ng (L) [ (qull ) <qj_+11 >] et At

ji=2,...,J -1,
1 1 1
vy = - kl——g-—a| k|7 —a
A§UQJ+1(LH+1)2 [ <QJ+1 ) <QJ+% )

where forward and backward differences applied at the left and right boundaries, respectively.

é- LnJrl _ I

e (6A3.28)

Considering the chemical concentration for internal nodes j = 2,3,...,J —1 and assuming
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v; > 0 so that first order spatial derivatives are upwinded, finite difference approximations give

0= i+ (5A.3.24)

At ( n+1 _ n+l
AV (cj Cj—l)

_ n+1 1 1 1 1 1 _
AL ST ag? [ <q;¢f " q?“) <k (qﬁf a’) o <Q? o a))
1 1 1 1
St |kl mm—a) +E| w7 —a
<‘1j+1 qﬁf) < (%‘H ) <qj+11 >> ]

DAt n+l _ o n+l n+1
(ReLnTTY ( jo1 T2+ j+1>'

Similarly, if v; < 0 upwinding is applied to the first order spatial derivative. At { = 0 we apply a
forward difference approximation to Equation (5A.3.12) governing the chemical concentration

which gives
0=—ctt gt (5A.3.25)
At £ = 1 we apply a backwards difference approximation to Equation (5A.3.13) governing the

chemical concentration which gives

SA&L"'H

0= — n+1 n+1
¢ Tt Tp

(5A.3.26)

Equations (5A.3.15)-(5A.3.26) form a system of nonlinear algebraic equations for the cell

density, chemical concentration, and evolution of L(¢). We solve these equations using the
Newton-Raphson method [44][158]. In each Newton-Raphson iteration we first update L(¢), ac-

cording to Equation (5A.3.15), then the cell density, governed by Equations (5A.3.16)-(5A.3.20),
then the chemical concentration, governed by Equations (5A.3.24)-(5A.3.26). Newton-Raphson

iterations are performed at each time point until the infinity norm of the the difference between
successive estimates of {g/"*,¢*!, ... ¢} !} and {1, 5, ..., T is below a specified
tolerance, e. To ensure that the Newton-Raphson iteration converges we apply adaptive time
stepping. To implement adaptive time stepping we introduce a maximum number of iterations.
When the maximum number of iterations is reached without the tolerance being met we di-
vide the timestep by ten and repeat. Once the tolerance is met we reset the time step for
the next temporal node. In our results adaptive time stepping is important when the chemical
concentration first reaches the chemical threshold at L(¢), and it reduces the computational
time required to obtain the numerical solution. We use the Thomas algorithm to solve the lin-

ear systems which arise from the Newton-Raphson method. To ensure all numerical results
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are grid-independent we set A¢ = 1072, initially set At = 1073, set the maximum number of
iterations for each time step to ten, and set e = 1075.

Key algorithms used to generate results are available on


https://github.com/ryanmurphy42/Murphy2020b.git
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5A.3.1 Initial conditions

In this work, we refer to three types of initial conditions: compressed, mechanical equilibrium,
and stretched. Here, we state these for the discrete and continuum model.

In the discrete model we choose every cell to initially have the same length, [;(0) =
L(0)/N(0). If I; < a then each cell is compressed and the tissue is compressed. If I; = a
then each cell is at its resting cell length and the tissue is at mechanical equilibrium. If [; > a
then each cell is stretched and the tissue is stretched. The corresponding initial conditions in

the continuum model are obtained using ¢(z,0) = N(0)/L(0) for 0 < = < L(0).
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5A.4 Additional results

5A.4.1 Counting the total number of cells that detach

We first define M (t) as the total number of cells which have detached by time ¢. For chemically-
independent EMT, cell detachment occurs at a constant rate w. Therefore, M(t) = wt while
N(t) > 0, i.e. the total number of cells which have detached increases linearly with time while
the tissue still contains cells. If N(t) reaches zero then M (t) plateaus. In Figures [5A.4[a)-(d),
we show the good agreement between the results of the average of many discrete realisations
and M (t) = wt. This holds for later times in Figure b) as the tissue does not go extinct.
In contrast for Figures a),(c),(d) M (t) eventually plateaus at later times due to extinction.

For chemically-dependent EMT and D = 107 in Figure e), M (t) is very similar to
the chemically-independent EMT case due to how parameters are chosen, as discussed in
Section [5.4.3] Also note that as ¢ = 0.9 in Figure [FA.4|e) the cells require some time to
reach the chemical threshold before detaching rapidly. Hence, we observe reduced noise for
chemically-dependent EMT with D = 10~° in comparison to results for chemically-independent
EMT in Figures [pA.4|a)-(d). As ¢ — 0 the noise in M (t) will increase, whereas for ¢ = 1 there
will be no noise in M (t). For chemically-dependent EMT with higher diffusivities of D = 102
and D = 1, Figures pA.4[f),(g), respectively, cell detachment is initially delayed, then cells

detach rapidly until extinction occurs.
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3.1 Chemically-independent EMT and cell-length-independent proliferation
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Figure 5A.4: Evolution of total number of cells that detach, M (t), for examples presented in the main
manuscript. (a)-(b) Chemically-independent EMT and cell-length independent proliferation (from Sec-

tion -i (c)-(d) Chemically-independent EMT and linear cell-length-dependent EMT (from Section
. (e)-(g) Chemically-dependent EMT and cell-length-independent proliferation for (e) D = 10~?,

(f) =1072,(g) D = 1 (from Section [5.4.3][5.4.4). The average of 2000 discrete realisations (blue) are
compared W|th M(t) = wt (green).
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5A.4.2 Cell-length-independent proliferation

In the main manuscript we present results for the evolution of N(t) and L(¢) with k£ = 1 starting

with cells initially at mechanical equilibrium. In Figures [5A.6] and BA.7] we present results for

k = 10 and tissues that are initially compressed or stretched. Good agreement is observed
between the continuum model and the average of many discrete realisations.

In Figures and[bA.8|we compare snapshots of the density, ¢(z, ¢), from the continuum
model to the average of many discrete realisations and observe good agreement. Differences
at the free boundary = = L(t) are a result of the length in each discrete realisation being

different due to the stochastic proliferation and cell detachment mechanisms.

@ t=0 (b) t=100 (c) t=200
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Figure 5A.5: Density snapshots corresponding to N(0) = 60 in Figure Cells are initially at their
resting cell lengths. The average of 2000 discrete realisations (blue) are compared with the continuum
model (green) at times (a) ¢t = 0, (b) ¢ = 100, (c) ¢t = 200. Mechanical parameters: k = 1,a = 0.1, = 1.
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Figure 5A.6: Cell-length-independent proliferation and chemically-independent cell detachment for
N(0) = 20 and k& = 10 with initial conditions: (a),(d),(g) compressed, (b),(e),(h) mechanical equilibrium,
(c),(f),(i) stretched. (a)-(c) Kymographs with density, ¢(z, t), colouring. The average of 2000 discrete re-
alisations (blue) are compared with the continuum model (green). (d)-(f) Evolution of total cell number,
N(t). (g)-(i) Evolution of tissue length, L(t). Mechanical parameters: k = 10,a = 0.1, = 1.
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Figure 5A.7: Cell-length-independent proliferation and chemically-independent cell detachment for
N(0) = 60 and k& = 10 with initial conditions: (a),(d),(g) compressed, (b),(e),(h) mechanical equilibrium,
(c),(f),(i) stretched. (a)-(c) Kymographs with density, ¢(z, t), colouring. The average of 2000 discrete re-
alisations (blue) are compared with the continuum model (green). (d)-(f) Evolution of total cell number,
N(t). (g)-(i) Evolution of tissue length, L(t). Mechanical parameters: k = 10,a = 0.1, = 1.
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Figure 5A.8: Density snapshots corresponding to Figure The average of 2000 discrete realisa-
tions (blue) are compared with the continuum model (green) at times ¢ = 0,100, 200 for initial tissue
lengths, L(0) = 3,6, 12. Mechanical parameters: k = 10,a = 0.1, = 1.
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5A.4.3 Cell-length-dependent proliferation

Previously, with cell-length-independent proliferation starting with N(0) = 42 leads to un-
bounded growth in the continuum model, and mostly unbounded growth but sometimes ex-
tinction for realisations of the discrete model. Now we consider cell-length-dependent prolif-
eration, where the initial tissue length can influence the long-term behaviour. Here we also
assume chemically-independent cell detachment. Now with N (0) = 42, if the tissue is initially
compressed then extinction is more likely (Figure [5A.9@,c,e) whereas if the tissue is initially
stretched then the tissue is more likely to eventually grow without bound (Figure 5A.9|b),(d),(f)).
Good agreement is observed between the average of many discrete realisations and the con-
tinuum description with differences due to being close to extinction (Figures FA.9(a),(c),(e))

and due to some discrete realisations crossing the critical length threshold while others do not

(Figures BAg(b),(d),())-
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Figure 5A.9: Chemically-independent cell detachment with linear cell-length-dependent proliferation
mechanism. Two initial cell populations with N(0) = 42, the first uniformly compressed with L(0) = 2

and the second uniformly stretched with L(0) = 10 (a)-(b) Kymographs with density, ¢(x,

t), colouring.

The average of 2000 discrete realisations (blue) are compared with the continuum model (green). (c)-
(d) Evolution of total cell number, N(t). (e)-(f) Evolution of tissue length, L(t). Red dashed line in (e)-(f)
corresponds to the critical tissue length, w/5. (e)-(f) Evolution of total cell number, N(¢). Mechanical
parameters: k=1,a =0.1,n = 1.
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5A.4.4 Differences between the cell-based and continuum models: low N(¢)

In the main manuscript, we state that the average of many cell-based realisations does not
agree with the solution of the continuum model when N (¢) is low and close to extinction. Here
we provide further explanation.

In Figure 5A.10fa), we extend the results from Figure 5.3]to ¢ = 400. We observe that after
approximately ¢ = 200 there is a difference between the average of many discrete realisations
and the continuum model. Similar behaviour is observed for the evolution of L(¢) in Figure
[BA10(b). These differences do not reduce when more simulations are performed. In Figure
5A.10[c) we compare the solution of the continuum model with fifteen realisations of the dis-
crete model and observe that many discrete realisations go extinct before the continuum model
reaches N (t) = 0.

In Figure BA.10fd) we simulate only the total cell number of the discrete model, which
evolves stochastically according to N(t + dt) = BN(t) — w, with two methods: i) whenever
N(t) = 0 in an individual realisation it is stopped; ii) allow N(¢) < 0. We find that if we allow
N(t) < 0 then the discrete model matches results from the continuum model. However, allow-
ing N(t) < 0 is physically unrealistic. Instead, stopping individual realisations when N (¢) = 0
is physically realistic. Therefore, we must accept that the continuum model does not faithfully
replicate the behaviour of the discrete model near extinction. Hence, the discrete model should

be used when considering populations with low N ().
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Figure 5A.10: Differences near extinction between discrete and continuum results for total cell number
and interface position. The average of 2000 discrete realisations (blue) are compared with the con-
tinuum model (green). (a) Evolution of total cell number, N(¢). (b) Evolution of tissue length, L(t). (c)
Evolution of number of cells, N (t), with 15 discrete realisations compared to solution from the continuum
model. Mechanical parameters: k£ = 10,a = 0.1, = 1. (d) Difference between discrete realisations
stopped when N(t) = 0 (blue), which is physically realistic, and those where N(¢) < 0 was allowed
which is physically unrealistic (red).
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5A.4.5 Chemically-dependent EMT: cell-length-independent proliferation

Small diffusivity, D = 10~°.

In Figure 5.6{d),(g) of the manuscript we observe that there is a difference between the
average of many discrete realisations and the continuum model. We explain that this is due
to the well-mixed assumption for chemical concentration inside cells not being valid for small
diffusivities. We show this in Figure BA.11] In Figure BA.11ja) we compare a snapshot of the
chemical concentration from the continuum model and a discrete realisation at very early time,
t = 0.15. In Figure BA.11[b) we compare the c(L(t),t) from the continuum model with ¢y (t)
from fifteen realisations of the discrete model, as these are used to calculate the rate of cell
detachment. These results show that the continuum model reaches the concentration thresh-
old much earlier than the discrete model which causes the number of cells in the continuum

model to reduce faster than in the discrete model, hence explaining the difference in Figure

.6(d).(9)-
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Figure 5A.11: Continuum model (green) reaches concentration threshold (red-dashed) faster than
individual realisations of the discrete model (grey). Chemically-dependent EMT with D = 10~° and with
cell-length-independent proliferation. (a) Concentration snapshot from the continuum model at time ¢ =
0.15, ¢(z,0.15) for 0 < = < L(1), compared to one realisation of the discrete model, where the chemical
concentration in cell 7 is ¢;(0.15) fori = 1,2, ..., N. (b) Chemical concentration at the boundary node of
the continuum model, ¢(L(t),t), compared to the chemical concentration of the boundary cell, ¢y (), for
fifteen realisations of the discrete model. Here N(0) = 20. Mechanical parameters: k = 1,a =0.1,n =1
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Starting closer to the chemical threshold with D = 1

In Figure [5.6]f),(i) of the manuscript we observe that there is a difference for D = 1.
Here, we show that this difference is due to stochastic effects in realisations of the discrete
model. Each discrete realisation has a different tissue length, L(t), resulting in the concentra-
tion threshold being reached at different times, which does not occur in the continuum model
(Figure a)).

If instead, we compare results when starting close to the chemical threshold, C, we find an
improved match. Specifically, starting with D = 1 and ¢; = 490 fori = 1,2,...,20, and C' = 500,
rather than with ¢; = 0 for i = 1,2,...,20, we find an improved match (Figure [pA.12|b)-(c)).
We observe that different realisations of the discrete model reach the concentration threshold,
C = 500, at approximately the same time as the continuum model (Figure BA.12(d)). This is

due to the reduced time for stochastic effects in N(¢) and L(¢) to play a role.
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Figure 5A.12: Comparison of results from continuum model and the average of many realisations of the
discrete model for chemically-dependent EMT with D = 1 and cell-length-independent proliferation. (a)
Evolution of the chemical concentration in the final cell, ¢y (¢), when ¢;(0) = 0fori =1,2,...,20. Some
discrete realisations reach the concentration threshold, C' = 500 (red-dashed), earlier than the contin-
uum model. (b)-(c) The average of 2000 discrete realisations (blue) are compared with the continuum
model (green). (b) Evolution of total cell number, N(¢). (c) Evolution of tissue length, L(t). (d) Evolution
of the chemical concentration in the final cell, ¢y (t), when ¢;(0) = 490 for ¢ = 1,2, ...,20. Realisations
of the discrete model reach the concentration threshold, C = 500 (red-dashed), at approximately the
same time as the continuum model. Fifteen individual realisations of the discrete model are shown in
(a) and (d). Mechanical parameters: k =1,a =0.1,n = 1.
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5A.4.6 Sensitivity to ¢

Chemically-dependent cell detachment is a two-step process: i) the boundary cell gains an
invasive phenotype when the chemical concentration inside the boundary cell is above the
chemical threshold, C'; ii) the boundary cell detaches. We introduce a parameter ¢ € [0, 1]
which defines the ratio of the average time in process i) as ¢/w and the average time in process
iyas (1—¢)/w (Figure. In the manuscript we present results for ¢ = 0.9 (Figure. Here,
in Figure [5A.13| we present results for ¢ = 0.1. As before, we choose parameters so that the
average rate of cell detachment is the same as in previous models. To do this we keep the
chemical threshold, C, fixed and vary the constant number of molecules per unit time supplied
to the boundary cell from the external environment, S. Results for ¢ = 0.1 show improved
agreement between the continuum model and the average of many discrete realisations in
comparison to ¢ = 0.9. This is because the time to reach the chemical threshold is quicker
and the time to stochastically detach is longer. Results for D = 10~ (Figures a),(d),(g))
and D = 10~2 (Figures b),(e),(h)) look similar as they both reach the chemical threshold
after a very short time. Note that when ¢ = 0 the chemically-dependent model is the same as
the chemically-independent model.

In the above, we keep C fixed and vary S. Alternatively, one could vary C' and keep S fixed,
or vary both C and S. Furthermore, one could also keep both C' and S fixed, and varying the
rate of cell detachment. However, we do not show this here as then the average time for the
boundary cell to detach is not the same as the average time to detach for previous models,

which would not be a fair comparison.
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Figure 5A.13: Sensitivity to ¢. Figure exploring diffusion delaying first EMT event, repeated with
¢ = 0.1. Cell detachment driven by chemically-dependent EMT with varying diffusivities and cell-length-
independent proliferation mechanism. Cells initially at their resting cell lengths with initial cell popula-
tions N(0) = 20. Kymographs with chemical concentration, c(z, ), colouring shown for (a) D = 1075,
(b) D = 1072, (c) D = 1. (d)-(i) The average of 2000 discrete realisations (blue) are compared with the
continuum model (green). (d)-(f) Evolution of total cell number, N (¢). (g)-(i) Evolution of tissue length,
L(t). Mechanical parameters: k = 1,a = 0.1, = 1.
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5A.4.7 Chemically-dependent EMT: linear proliferation

In the manuscript we present results for cell detachment driven by chemically-dependent EMT
and a cell-length-independent proliferation mechanism. Here we present results with a linear
cell-length-dependent proliferation mechanism.

In Figure BA-14] we observe that when comparing an initially compressed tissue to an ini-
tially stretched tissue, with the same N (0), the time to reach the chemical threshold and the
time for all cells to detach is shorter for the initially compressed tissue. This is due to prolifera-
tion being less likely in the compressed tissue with cell-length-dependent proliferation. This is
also due to the chemical reaching the concentration threshold faster in the compressed tissue
than in the initially stretched tissue, as there is less space for the chemical to diffuse in the

compressed tissue.
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Figure 5A.14: Cell detachment at driven by chemically-dependent EMT with D = 10~2 and with lin-
ear cell-length-dependent proliferation. Two initial cell populations with N(0) = 20, the first uniformly
compressed with L(0) = 1 and the second uniformly stretched with L(0) = 4. (a)-(b) Kymographs with
density, ¢(z, t), colouring. (c)-(f) The average of 2000 discrete realisations (blue) are compared with the
continuum model (green). (c)-(d) Evolution of total cell number, N(t). (e)-(f) Evolution of tissue length,
L(t). Mechanical parameters: k = 1,a = 0.1,n = 1.
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5A.5 Diffusive equilibrium at all times

If the diffusivity of the EMT-inducing chemical is very high it is reasonable to assume that the
chemical in the tissue is at diffusive equilibrium at all times. This simplifies the analysis as
every cell in the tissue experiences the same concentration at time ¢, which we denote ¢(t).
This can be useful to understand possible long-term behaviours.

To proceed, we make a further assumption that cells are always at mechanical equilibrium
and consider the continuum model. As cells are at mechanical equilibrium, the cell-length-
independent and cell-length-dependent proliferation mechanisms are equivalent, so before any
cell detachment events occur N (t) = N(0) exp(5t), L(t) = N(t)a, and ¢(t) = St/L(t). Then for
cell detachment to occur at least once we require that ¢(¢) > C which is equivalent to requiring
N(0) < S/ (CaBexp(l)) = Ny.

So if N(0) > Ny the tissue grows without bound and there is no EMT and no cell detach-
ment, and N (¢) evolves according to dN(t)/dt = BN (t). However, if N(0) < Nj the time
to reach the concentration threshold, ¢¢, is the solution of ¢/ exp(Stc) = CN(0)a/S. While
c(t) > C, N(t) evolves according to dN (¢)/dt = SN (t) — ¢w and if the concentration decreases
below C then N(t) evolves according to dN(¢)/dt = BN (t). This results in four possible be-

haviours:
1. unbounded tissue growth without EMT and cell detachment (Figure a),(b));
2. unbounded tissue growth with some EMT (Figure c),(d));
3. eventual tissue homeostasis and constant EMT (Figure e),(®);

4. eventual tissue extinction due to EMT (Figure 0),(h)).
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Figure 5A.15: For diffusive equilibrium at all times and instantaneous mechanical relaxation there
are four possible behaviours. (a) Unbounded tissue growth without EMT and cell detachment. (b) Un-
bounded tissue growth with some EMT. (c) Eventual tissue homeostasis and constant EMT. (d) Eventual
tissue extinction due to EMT. Purple dashed line corresponds to chemical threshold C. Results shown
for S = 50/9,C = 500,¢ = 0.9,k = 1,a = 0.05, 8 = 0.0025,w = 0.1.
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6.0 Preamble

An article under consideration at Nature Communications

Murphy RJ, Browning AP, Gunasingh G, Haass NK, Simpson MJ (2021). Designing and in-

terpreting 4D tumour spheroid experiments. Under consideration at Nature Communications.

[oloRxiIv preprint]

In this chapter we transition to Part 2 of this thesis exploring how mathematical modelling
can improve experimental designs, in particular for tumour spheroid experiments that are rou-
tinely performed to study cancer progression and treatment. We address objective 5 and
research question 5. We focus on avascular tumour growth and directly quantitatively connect
experimental data, that | collect in the wet laboratory (Figure [6.0), to mathematical modelling
using statistical analysis. Since many mathematical models have already been proposed to
study avascular tumour growth, but few have been experimentally validated, we use the sem-
inal Greenspan mathematical model [79]. Greenspan’s model, due to a spherical symmetry
assumption, describes the growth of the tumour with equations with one spatial dimension,
namely the tumour radius. Note that models in Chapters [2}5] also have one spatial dimension.
Also, similarly to Part 1 of this thesis, Greenspan’s model is a mechanochemical model. How-
ever, in Greenspan’s model mechanical interactions are assumed to maintain the tumour as
a compact solid mass, rather than being explored explicitly as in Chapters [2}j5] Furthermore,
chemical diffusion is important in Greenspan’s model to determine the time-evolution of the
tumour internal structure, whereas in Chapter [5| we explore chemical diffusion in relation to
epithelial-mesenchymal transitions.

Key results for this chapter include: performing tumour spheroid experiments with real-time
cell cycle imaging to collect an abundance of experimental data across a range of experi-
mental designs; verification of the Greenspan’s mathematical model to that experimental data;
and development of an objective mathematical modelling framework with statistical identifia-
bility analysis to quantitatively compare experimental designs and identify design choices that
produce reliable biological insight to provide recommendations for future studies.

Due to journal formatting requirements where this article is currently under consideration,
the layout of this chapter is different to previous chapters. This chapter is structured as fol-
lows: Introduction; Results; Discussion; and then Methods. The Supplementary Material for
this Chapter, included in Chapter [A] is extensive including: further details of mathematical
modelling methods; further details of statistical identifiability analysis methods; experimental

data; additional results for different cell lines; and additional results with synthetic data.


https://doi.org/10.1101/2021.08.18.456910
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Figure 6.0: To perform the tumour spheroid experiments to collect the experimental data for this chap-
ter | was trained, starting from no experience in a laboratory prior to this PhD. | performed tumour
spheroid experiments from start to finish including: cell culturing; spheroid formation; spheroid harvest-
ing; spheroid fixing and mounting in preparation for imaging; confocal microscopy; and, image acquisi-
tion, processing, and analysis. Images show me in the laboratory during the spheroid formation stage of
an experiment (further details are shown in Section 6.5.3 Experimental methods and the experimental
protocol is detailed in [278]).
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6.1 Abstract

Tumour spheroid experiments are routinely used to study cancer progression and treatment.
Various and inconsistent experimental designs are used, leading to challenges in interpretation
and reproducibility. Using multiple experimental designs, live-dead cell staining, and real-time
cell cycle imaging, we measure necrotic and proliferation-inhibited regions in over 1000 4D
tumour spheroids (3D space plus cell cycle status). By intentionally varying the initial spheroid
size and temporal sampling frequencies across multiple cell lines, we collect an abundance
of measurements of internal spheroid structure. These data are difficult to compare and in-
terpret. However, using an objective mathematical modelling framework and statistical identi-
fiability analysis we quantitatively compare experimental designs and identify design choices
that produce reliable biological insight. Measurements of internal spheroid structure provide
the most insight, whereas varying initial spheroid size and temporal measurement frequency is
less important. Our general framework applies to spheroids grown in different conditions and

with different cell types.
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6.2 Introduction

Tumour spheroid experiments are an important in vitro tool routinely used since the 1970s

to understand avascular tumour growth, cancer progression, develop cancer treatments, and

reduce animal experimentation [46}[71}[99}[119}[150}[169][197}[215}[217}[245]. However, a vast

range of experimental designs are employed, leading to inconsistencies in: i) the times when

measurements are taken; ii) experimental durations, ranging from a few days to over a month
[8[78}[83}[121}[168|[T77]; iii) the initial number of cells used to form spheroids
[121][168|[177], commonly between 300 to 20, 000 cells [54}[168]; and, iv) the type of experimental
measurements that are taken [8}[18][54}[83}[88] [121}[168][177]. This variability in experimental

protocols makes comparing different studies very difficult, and introduces challenges in both
interpretation and reproducibility of these experiments.

Mathematical modelling provides a powerful tool to provide such intepretation through
model calibration and mechanism deduction. Simple mathematical models calibrated to outer
radius measurements, such as Gompertzian growth models, have been used for decades to
predict the growth of tumours [22][T73]. However, these simple mathematical models do not
provide information about the internal spheroid structure over time. In response, many mathe-
matical models of varying complexity have been developed to explore the internal structure of

spheroids [7}16|[T7}{36){37|40}[65}[79}/B5}[1 05|[T06}[T08}[1 T7][T22)[T35|[T48|[T49}[152}[191}242][243].

Here, we revisit the seminal Greenspan mathematical model for avascular tumour spheroid

growth and quantitatively directly connect it to data for the first time [79]. Greenspan’s mathe-
matical model was the first to describe the three phases of avascular tumour spheroid growth:
in phase (i) cells throughout the spheroid can proliferate; in phase (ii) cells near the periphery
proliferate while a central region of living cells cannot proliferate, referred to as the inhibited
region; and in phase (iii) there is an outer region of proliferative cells, an intermediate region of
living inhibited cells, and a central necrotic region composed of dead cells and cellular material
in various stages of disintegration and dissolution (Figure [6.7-d, Methods [6.5.1). These vari-
ous regions of cellular behaviour are thought to arise as a result of nutrient availability, such as
oxygen, that is driven by diffusion and uptake.

In this study, we systematically explore a range of experimental designs and measure-
ments. The first and simplest measurements we obtain are of the outer radius of the spheroid.
Next, using live-dead cell staining we obtain measurements of the necrotic region. Measure-
ments of the inhibited region are harder to obtain using traditional techniques. We use fluo-
rescent ubiquitination-based cell cycle indicator (FUCCI) tranduced cell lines
[238[257]. The nuclei of these cells fluoresce red when cells are in the gap 1 (G1) phase of
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the cell cycle and green when cells are in the synthesis (S), gap 2 (G2) and mitotic (M) phases
of the cell cycle (Figure [6.1k). For clarity, we choose to show cells in the gap 1 (G1) phase in
magenta instead of red. These data are collected for human melanoma cell lines established
from primary (WM793b) and metastatic cancer sites (WM983b, WM164) [87][100} 213} [214],
with endogenously low (WM793b) and high (WM983b, WM164) microphthalmia-associated
transcription factor which is a master regulator of melanocyte biology [219]. Analysing these
data provides real-time visualisation of the cell cycle throughout tumour spheroids and power-
fully reveals the time evolution of the inhibited region (Figure[6.Tp-d). This additional dimension
of information that we capture in our experiments, namely the cell cycle status, together with
the three-spatial dimensions of the tumour spheroid give rise to the term 4D tumour spheroid
experiments. Given an abundance of measurements of the outer radius, inhibited radius, and
necrotic radius for tumour spheroids across multiple initial spheroid sizes, time points, and cell
lines, we calculate maximum likelihood estimates (MLE) and form approximate 95% confidence
intervals for the parameters of the Greenspan model. This allows us to quantitatively elucidate
how modifying experimental designs can extract more information from experiments. Further-
more, this approach identifies the experimental design choices that are important and lead to

reliable biological insight.
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Figure 6.1: Tumour spheroid growth and the Greenspan mathematical model. Tumour spheroids expe-
rience three phases of growth. (a)-(d) Confocal microscopy reveals different phases of tumour growth.
Fluorescent ubiquitination-based cell cycle indicator (FUCCI) transduced cells allow visualisation of
each cell’s stage in the cell cycle. (a)-(c) 2D equatorial plane images of WM793b human melanoma
tumour spheroids, formed with 5000 cells per spheroid, on days 3, 8, and 17 after formation. Scale bar
200 um. (d) 3D representation of half of a WM793b human melanoma tumour spheroid on day 17 after
formation, additional 3D representations are shown in supplementary material (e) Cell cycle
schematic coloured with respect to FUCCI signal. (f) Schematic for Greenspan mathematical model.
Nutrient diffuses within the tumour spheroid and is consumed by living cells. (g) Snapshot of nutrient
concentration, ¢(r,t) for 0 < r < R,(t), for a tumour spheroid in phase (iii) and where R,(t) is the tu-
mour spheroids outer radius. External nutrient concentration is c... Inhibited radius, R;(t), and necrotic
radius, Ry (t), are defined as the radius where the nutrient concentration first reaches the thresholds ¢;
and c,, respectively. (h)-(j) Three experimental designs varying by measurement type. Design 1 con-
siders only the outer radius (green). Design 2 considers the outer (green) and necrotic radius (black).
Design 3 considers the outer (green), necrotic (black), and inhibited (magenta) radius. (k) Compari-
son of experimental designs with respect to their value and effort required. (l)-(n) Three experimental
designs that vary due to the time resolution at which measurements are taken. (o) Four experimental
designs that vary the number of cells used to form each spheroid.
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6.3 Results

The results in this main document are for spheroids formed with the WM793b human melanoma

cell line [87}[100[273]}[214]. Additional results in Supplementary Material [fA.6] and [6A.7] show

results for two other cell lines.

6.3.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii

Tumour outer radius measurements are simple to obtain and have been used for decades to
quantify tumour growth [22,[T73]. Modern technology enables these measurements to be ob-
tained more frequently, easily, and accurately. For example, the IncuCyte S8 live cell imaging
system (Sartorius, Goettingen, Germany) enables automated image acquisition and process-
ing to measure spheroids every minute throughout an experiment providing a large number of
measurements with ease. However, it is unclear whether these measurements provide suffi-
cient information to understand and probe the internal structure of tumour spheroids and accu-
rately predict tumour growth. Furthermore, it is unclear when measurements should be taken
and the frequency of measurement. Performing experiments with WM793b spheroids formed
with 5000 cells per spheroid, a typical choice in many experiments [83][217H219], 24 spheroids
are imaged every six hours. We monitor the time evolution of the outer radius to determine
when spheroid formation ends and growth begins, which we call day 0 and occurs four days af-
ter seeding (Supplementary Material [pA.3.7)), and to decide when to terminate the experiment,
which we choose to be day 20. These measurements, supplemented with additional outer
radius measurements from spheroids harvested for confocal imaging (Supplementary Material
[6A.3.2[6A.3.3), provide an abundance of data. We now compare three experimental designs
with increasing temporal resolution: (i) Resolution A, using measurements from days 1, 3, 8,
12, 17 (Figure [6.1), [6-2p); (ii) Resolution B, using measurements from days 1, 3, 6, 8, 10, 12,
14, 17, 19 (Figure [6.1m, [6.2b); and, (iii) Resolution C, using daily measurements from day 0
to day 19 (Figure[6.Th,[6.2c). Excluding the final day(s) of measurements from these temporal
resolutions allows a predictive check to be performed. Note that all these temporal resolutions
are low relative to the capability of the automated imaging system but are high relative to the
number of measurements typically taken in standard experiments [83][87][121}[138][177].

To understand the influence of the choice of temporal resolution we now qualitatively and
quantitatively compare the results. Across the three temporal resolutions in Figures [6.20-f

we observe excellent agreement between the full set of outer radius measurements, collected
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Figure 6.2: Increasing the temporal resolution when the outer radius is measured is not sufficient to
predict necrotic and inhibited radii. (a)-(c) Experimental data used in Design 1 with temporal resolutions
A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood estimate com-
pared to full experimental data set, where error bars show standard deviation of the experimental data.

Profile likelihoods for (g) s, (h) R.,

(i) 7, (j) Q- Yellow, blue, orange lines in (g)-(j) represent profile likeli-

hoods from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
5000 cells per spheroid.
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every six hours, and the predicted outer radius from the Greenspan model simulated with the
MLE (Methods[6.5.1}6.5.2). However, it is clear that the prediction of the inhibited and necrotic
radius is poor with Resolutions A and B (Figures [6.2d-e). With Resolution C, the prediction of
the inhibited and necrotic radius appears to have improved (Figure [6.2f) but we will show that
it is misleading to suggest that increasing the temporal resolution is always beneficial. While
MLE point estimates are insightful, it is unclear whether a similarly excellent match to the outer
radius measurements could be obtained with different parameter values in the mathematical
model. To answer this question we undertake a profile likelihood analysis of the five parameters

that govern the behaviour of the mathematical model (Methods [6.5.1):

1. s [day~'], the rate at which cell volume is produced by mitosis per unit volume of living

cells (Figure[6.2h),

2. R. [um], the outer radius when the necrotic region first forms (Figure [6.2h),

3. v = \/s[-], the proportionality constant given by the rate at which cell volume is lost from
the necrotic core, A, divided by the rate at which cell volume is produced by mitosis per

unit volume of living cells, s, (Figure )s

4. Q% = (coo —¢i) / (coo — cn) [-], the ratio of the difference between the inhibited nutrient
concentration threshold, ¢;, and external nutrient threshold, ¢, to the difference between
the necrotic nutrient concentration threshold, ¢,, and external nutrient threshold, ¢ (Fig-
urel6.2)),

5. Ro(0) [um], the initial outer radius (Supplementary Material [6A.4.3).

Profile likelihoods are a powerful tool to visualise and analyse how many parameter val-
ues give a similar match to the experimental data in comparison to the MLE. Furthermore, we
use profile likelihoods to compute approximate 95% confidence intervals for each parameter
(Supplementary Material [pA.4.7). Narrow approximate 95% confidence intervals indicate pa-
rameters are identifiable and that few parameters give a similar match to the data as the MLE.
In contrast, wide approximate 95% confidence intervals suggest that parameters are not identi-
fiable, that many parameters give a similar match to the experimental data, and that additional
information is required to confidently estimate the parameters.

The profile likelihoods for s across all three temporal resolutions (Figure[6.2g) lead to a peak
that is close to s = 0.14 [day~!]. These peaks correspond to the MLEs. While there is a wide
95% approximate confidence interval for s with Resolution A, there are narrow approximate

95% confidence intervals for s with Resolutions B and C. The profile likelihoods for the other
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parameters, R.,v, and @, are wide and do not change signficantly using different temporal
resolutions (Figures[6.2h-j). For example, the profile likelihoods for  across all three temporal
resolutions (Figure [6.2]) are approximately flat and equal to one. These profile likelihoods for
R.,~, and @ suggest that increasing the temporal resolution does not provide significant ad-
ditional information. These results are consistent with additional results using synthetic data
(Supplementary Material [pA.5). Additional results for different initial spheroid sizes (Supple-
mentary Material and results for the WM983b cell line also clearly show that increasing
the temporal resolution may result in a worse prediction from the MLE for the time evolution
of the internal structure (Supplementary Material [fA.6). Overall, these results suggest that
Design 1 (Figure[6.1h) is not a reliable design to identify the true parameter values and cannot

be used to determine details of the internal structure of tumour spheroids. This is important

because this is the most standard measurement [18}[119[138}[168|[73}[177].
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6.3.2 Cell cycle data are informative

Given that measuring the outer radius of tumour spheroids alone (Design 1) is insufficient to
determine details of the internal spheroid structure, we now examine which measurements
are required to provide reliable estimates. The next simplest measurements to obtain are
both the outer radius and necrotic core radius, which we refer to as Design 2 (Figure [6.1]).
However, Design 2 requires far more experimental effort since necrotic core measurements are
more time-consuming involving harvesting, fixing, staining procedures, confocal microscopy or
cryosectioning, and image processing. In addition, necrotic core measurements are end point
measurements only, meaning that many spheroids are required to collect many data points.
While intuitively we may anticipate that more effort leads to more insight, it is impossible to
quantify the value of this additional effort without a mathematical modelling and uncertainty

quantification framework such that we employ here.

Using Design 2, with low temporal resolution, for spheroids formed with 5000 cells per
spheroid, we do not observe a necrotic core until approximately day 8 (Figure [6.3p, Supple-
mentary Material [6A.3.3). The Greenspan model simulated with the MLE excellently matches
the growth of the outer radius, as before, and now captures the formation and growth of the
necrotic core (Figure [6.3c). Interestingly, the MLE suggests that the inhibited region is very
small, so R;(t) is very close to R,(t). However, experimental measurements of the inhibited
radius not only suggest that an inhibited region exists, but that it forms prior to the formation of
the necrotic core (Supplementary Material [fA.3.3). Profile likelihoods for each parameter are
relatively narrow, and because the profile for @ is peaked and close to @ = 1, these profiles
are consistent with either the absence of an inhibited region or a very small inhibited region
(Figures [6.3e-h). Therefore, these data do not identify the true parameter values since the
calibrated mathematical model is inconsistent with the experimental observations that clearly
show the formation of an inhibited region. This inconsistency does not mean that the math-
ematical model is incorrect. Our interpretation of this inconsistency is that this experimental
data are insufficient to identify the parameters in the mathematical model.

We now explore Design 3, where we measure the outer, necrotic, and inhibited radius of
multiple tumour spheroids (Figure [6.1], [6.3p). This design is considered third because mea-
suring the inhibited radius is more difficult and requires substantial additional experimental
effort. Using FUCCI transduced cell lines in combination with optical clearing procedures and
confocal microscopy powerfully reveals intratumoral spatiotemporal differences with respect to
the cycle. This method also requires semi-automated image processing and expert guidance

to minimise subjectivity and accurately identify the inhibited region boundary (Supplementary
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Material [fA.3.2) [218]. Simulating the Greenspan model with the MLE from Design 3 matches
the evolution of the outer radius and captures the evolution of the necrotic and inhibited regions
very accurately (Figure [6.3d). Furthermore, the profile likelihoods for all parameters are well
formed, with a single narrow peak, suggesting that Design 3 identifies the true parameter val-
ues (Figure [6.3e-h). Comparing experimental Designs 1, 2, and 3, we observe that the profile
likelihoods for s are consistent across all designs (Figure [6.3g) and the profile likelihoods for R,
(Figure |6.3f) are consistent for Designs 2 and 3. However, the profile likelihoods for ~ (Figure
[6-3p) and Q (Figure [6.3h) emphasise the power of measuring the inhibited radius and using
Design 3 in comparison to Designs 1 and 2. These observations are consistent with addi-
tional results obtained using synthetic data (Supplementary Material [fA.5), different cell lines
(Supplementary Material [pA.6), and initial spheroid sizes (Supplementary Material [pA.4.5). In
Supplementary Material we also consider Design 3 with different temporal resolutions
and experimental durations. Experiments performed for 4 or 10 days after spheroids form do
not accurately predict late time behaviour. Designs that use the first days 10 to 20 or days 16
to 19 of measurments do not always accurately predict early time behaviour. Most insight is

gained with Resolutions A, B, and C that cover the full experimental duration.



CHAPTER 6. DESIGNING AND INTERPRETING 4D TUMOUR SPHEROID EXPERIMENTS 231
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Figure 6.3: Measuring the necrotic and inhibited radius provides valuable information. (a)-(b) Experi-
mental data used in Designs 2 and 3. (c)-(d) Comparison of Greenspan model simulated with maximum
likelihood estimate compared to full experimental data set for Designs 2 and 3, where error bars show
standard deviation. Profile likelihoods for (e) s, (f) R.,
(h) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
5000 cells per spheroid.
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6.3.3 Information gained using spheroids of different sizes is consistent

In the literature tumour spheroids are initialised with a wide range of cell numbers, lead-
ing to inconsistent results that are difficult to meaningfully compare across different proto-
cols [8][18][54}[83][88][121][168}[T77]. Furthermore, it is unclear what the impact of this variability
is when tumour spheroids are used to study fine-grained molecular-level interventions or po-
tential drug designs. To quantitatively compare how information gained across experimental
designs differs with respect to the initial number of cells in a spheroid we consider four initial
spheroid sizes: 1250, 2500, 5000, 10000 cells per spheroid (Figure[6.1p). To proceed we use
Design 3, and measure outer, necrotic, and inhibited radius, with time resolution A. Profile like-
lihoods for R,(0) show four distinct narrow peaks corresponding to each initial spheroid size
as expected (Figure [6.4p). Profile likelihoods for s, R., and @ are consistent across the four
initial spheroid sizes, allowing us to compare profile likelihoods on narrower intervals in Figures
[6.4b,c.e. The profile likelihoods for ~ (Figures[6.41) are more variable due to the differing num-
ber of measurements collected in phase (iii). These results suggest that the initial spheroid
size does not play a significant role in determining information from experiments, provided suf-
ficient measurements are obtained in phase (iii). To support these results, we show along the
diagonal of Figure [6.4f the solution of the mathematical model evaulated at the MLE associ-
ated with each initial spheroid size compared to the experimental measurements. Next, on the
off-diagonals of Figure |6.4f, we compare how the Greenspan model simulated with the MLE
from one initial spheroid size predicts data from different initial spheroid sizes by only changing
the initial radius. For example, in the top right of Figure [.4f we show that the Greenspan model
simulated with the MLE obtained formed with 10000 cells per spheroid agrees well with data
from spheroids formed with 1250 cells per spheroid, when the initial radius is set to be the ini-
tial radius of the 1250 MLE. Results in Figure [6.4f also show the inhibited and necrotic regions
form earlier when considering spheroids formed with more cells, and results for spheroids
formed with 10000 cells per spheroid suggest that these spheroids form in phase (ii) rather
than phase (i). These observations are consistent with additional results from synthetic data
(Supplementary Material [6A.5) and the WM983b cell line (Supplementary Material [6A.6).
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Figure 6.4: Information gained from experiments across different initial tumour spheroid sizes is mostly
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lines in (a)-(e) represent profile likelihoods from WM793b spheroids formed with 1250, 2500, 5000,
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interval threshold. (f) Comparison of Greenspan model simulated with maximum likelihood estimates
compared to full experimental data sets across initial tumour spheroid size, where error bars show
standard deviation.
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6.4 Discussion

In this work we present an objective theoretical framework to quantitatively compare tumour
spheroid experiments across a range of experimental designs using the seminal Greenspan
mathematical model and statistical profile likelihood analysis. By considering different temporal
data resolutions, experiment durations, types of measurements, and initial spheroid sizes we
identify the experimental design choices that lead to reliable biological insight. Namely, Design
3 where we obtain outer, necrotic, and inhibited radius measurements requires most effort but
is essential to determine the dynamics of tumour spheroid structure and growth. Importantly,
we also show that temporal resolution and initial spheroid sizes are less important choices.
Therefore, we recommend that for future studies, where tumour spheroid structure is impor-
tant, that cell cycle data are esssential and that some measurements using Design 3 is more
valuable than many measurements using Designs 1 or 2. Furthermore, as information from
tumour spheroids across varying initial spheroid sizes is relatively consistent, provided suffi-
cient measurements in phase (iii) are obtained, we recommend that performing experiments
with larger tumour spheroids can be beneficial to obtain useful information in a shorter experi-
mental duration (Supplementary Material [6A.5.3). However, we also note that this may lead to
large tumour spheroids that begin growth in phase (ii) rather than phase (i).

To perform this analysis we use Greenspan’s seminal mathematical model, where all pa-
rameters have a relatively straightforward biological interpretation. We find that Greenspan’s
model performs remarkably well across cell lines and initial spheroid sizes, and provides pow-
erful insights into experimental design. Even though Greenspan’s model is relatively simple,
and may not capture all of the biological details of tumour spheroid growth, the fact that results
for experimental data are consistent with those from synthetic data enhances our confidence
that key biological features are captured in Greenspan’s model (Supplementary Material [fA.5).
Future modelling may wish to explore potential model misspecifications, for example WM983b
spheroids appear to reduce in size at very late time suggesting a fourth phase in these in vitro
experiments (Supplementary Material [6A.6); and, WM164 spheroids, possibly due to their lack
of spherical symmetry [279], are more challenging to interpret as information gained using
spheroids of different sizes is not consistent (Supplementary Material [6A.7).

The general framework presented in this work can be applied to other cell types, for exam-
ple FUCCI-transduced lung, stomach and breast cancer cells [223][250][251][255], to extract

more information from existing experimental data across experimental designs, and is suitable

to be extended to consider tumour spheroids grown in different conditions and to more complex

mathematical models. Given that cell cycle data is demonstrated to be informative in this study,
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we suggest that it may be beneficial for FUCCI technology to be further developed and more
widely used, for example in avascular patient-derived organoids [233], and our framework be
extended to these heterogeneous populations accordingly. Furthermore, the insights of this
study provide a platform for future studies that develop, test, and examine cancer treatments
with spheroids. In such future studies cell cycle data will be informative since cytotoxic or cy-
tostatic drugs may result in similar changes in the outer radius but due to different causes, that
can be measured by cell death and cell cycle imaging (Haass laboratory unpublished observa-

tions).



CHAPTER 6. DESIGNING AND INTERPRETING 4D TUMOUR SPHEROID EXPERIMENTS 236

6.5 Methods

6.5.1 Mathematical model

Greenspan’s mathematical model describes the three phases of avascular tumour spheroid
growth [79]. Spherical symmetry is assumed at all times and maintained by adhesion and
surface tension. Under these minimal assumptions, the only independent variables are time,
t [days], and radial position, r [um]. Tumour growth is governed by the evolution of the outer
radius, R,(t) [um], the inhibited radius, R;(t) [um], and the necrotic radius, R, (¢) [um]. Nutrient
diffuses within the spheroid with diffusivity & [um? day—!] and is consumed by living cells at a
constant rate per unit volume o [molum—2 day~']. The external nutrient concentration is cs
[mol um~3]. The nutrient concentration at a distance r from the centre of the spheroid and time
t, denoted c(r, t) [mol pm~3], is assumed to be at diffusive equilibrium. Therefore, at any instant
in time we have c(r,t) = ¢(r) due to fast diffusion of nutrient. However, as R,(t) is growing,
nutrient diffusion occurs on a growing domain and we write ¢(r) = ¢(r(t)). The inhibited and
necrotic regions form when the nutrient concentration at the centre of the spheroid reaches ¢
[mol um—3] and ¢, [mol pm~3], respectively. For c(r(t)) > c, the rate at which cell volume is
produced by mitosis per unit volume of living cells is s [day~!]. In the necrotic core cellular
debris disintegrates into simpler chemical compounds that are freely permeable through cell
membranes. The mass lost in the necrotic region is replaced by cells pushed inwards by forces
of adhesion and surface tension. The necrotic core loses cell volume at a rate proportional to
the necrotic core volume with proportionality constant 3\ [day—!], where the three is included

for mathematical convenience.

Conservation of mass is written in words as A = B+ C — D — E where A is the total volume
of living cells at any time, t; B is the initial volume of living cells at time t = 0; C' is the total
volume of cells produced in ¢ > 0; D is the total volume of necrotic debris at time ¢; E is the
total volume lost in the necrotic core in ¢ > 0. Writing A, B, C, D, E in their mathematical form

gives the conservation of mass equation and also writing the nutrient diffusion equation gives,

Rg(t)d}zot(t) = g [R3(t) — R3(t)] — AR3(¢), (6.5.1.1)
G (Peelr)) = HE - RUDH(ER(D -~ 1), 0Sr<Rf) (6512

where R;(t), R,(t) are the radii implicitly defined by ¢(R;(t),t) = ¢, and ¢(Ry(t),t) = cq,
respectively, if the nutrient concentration inside the spheroid is sufficiently small otherwise

Ri(t) = 0 or R,(t) = 0, and H(-) is the Heaviside step function. There are eight unknowns:
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© = (s,\, a, k, 0, Ci, Cn, Ro(0)). Note this includes R,(0) which we treat as a parameter since
we also need to estimate this quantity. Rescaling reduces the number of parameters to five:
0 = (R.(0), R, s,7,Q). The new dimensionless parameters are: the outer radius when the
necrotic region first forms defined as R? = (6k/a)(coo — cn); @ = (coo — ¢i)/(coo — cn); and
~ = s/A. Further details, and a formal demonstration that this model is equivalent to a model
where nutrient determines the necrotic region and waste produced from live cells determines

the inhibited region, are provided in Supplementary Material [6A.1]
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6.5.2 Practical parameter identifiability analysis

To determine the maximum likelihood estimate (MLE) and approximate 95% confidence inter-
vals for the parameters 0 = (R,(0), R, s,v, Q) we use profile likelihood identifiability analy-
sis [180}[188][204][205}[246]. We first choose simple parameter bounds and then compare the

width of these simple parameter bounds to realised interval estimates for the parameters. Ini-

tial parameter bounds are chosen to be the same across all experimental designs analysed in
this study. Outer radius data suggests we choose 0 < R,(0) < 350 [um] and 0 < R, < 250 [um].
Assuming a cell doubling time of at least 12 hours and performing preliminary data exploration,
we set 0 < s < 1 [day '] (Supplementary Material [A.2.1). Limited information exists for the
parameter v so bounds are determined by preliminary data exploration to be 0 < v < 6. By
definition of Q and experimental results that show the inhibited region forms before the necrotic
core, we set 0 < @@ < 1. Note that the time-evolution of R, (¢) and R,(¢) are the same for Q =1
and @ > 1. The difference arises for R;(t), where it is equal to R,(t) for @ = 1 and equal to

zero for Q > 1.

To determine the interval estimates for the parameters we treat the mathematical model as
having two components. The first is the deterministic mathematical model governing the evo-
lution of R,(t), Ry(t), and R;(t) and the second is a probabilistic observation model accounting
for experimental variability and measurement error. Specifically, we assume that experimental
measurements are noisy observations of the deterministic mathematical model [97][188]. For
each of the three measurement types R,(t), R,(t), and R;(¢t) we assume that the observa-
tion error is independent and identically distributed and that the noise is additive and normally
distributed with zero mean and variance o2, 02, and o2, respectively (Supplementary
Material[6A.2.3). We approximate o2 ~ s2,02 ~ s2, and o2 ~ s? where s2, s2, and s? are pooled

sample variances of the outer, necrotic, and inhibited radius measurements, respectively [31].

The likelihood function p(y°|6) is the likelihood of the observations y° given the parameter
6. This corresponds to the probabilistic observation model evaluated at the observed data.
The maximum likelihood estimate is § = argmax p(y°|0). We present results in terms of the
normalised likelihood function L(6;y°) = p(yoyee)/ meaxp(yO\H) which we consider a function of 6
for fixed y°. Profile likelihoods for each parameter are obtained by assuming the full parameter
# can be partitioned into a scalar interest parameter, i, and vector nuisance parameter, ¢, so
that 6 = (v, ¢). The profile likelihood for ¢ is then L,(¢;y°) = m(?x L(v, ¢;y°). Approximate
95% confidence intervals are then calculated using a profile likelihood threshold value of 0.15
(Supplementary Material [180]. Prediction intervals are not shown since confidence

intervals are narrow in many cases. Further details, including exact forms of the likelihood
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function and the use of log-likelihoods for calculations, and numerical methods are provided in
Supplementary Material [pA.2}
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6.5.3 Experimental methods

Cell culture. The human melanoma cell lines WM793b, WM983b, and WM164 were genotypi-
cally characterised [87}[T00}[213][274], grown as described in [217], and authenticated by short
tandem repeat fingerprinting (QIMR Berghofer Medical Research Institute, Herston, Australia).
All cell lines were transduced with fluorescent ubiquitination-based cell cycle indicator (FUCCI)
constructs as described in [87}[217].

Spheroid generation, culture, and experiments. Spheroids were generated in 96-well cell
culture flat-bottomed plates (3599, Corning), with four different seeding densities (1250, 2500,
5000, 10000 total cells/well), using 50 pl total/well non-adherent 1.5% agarose to promote for-
mation of a single spheroid per well [218]. For all spheroid experiments, after a formation phase
of 4, 3 and 2 days for WM793b, WM164 and WM983Db, respectively (Supplementary Material
[6A.3.1), and then every 3-4 days for the duration of the experiment, 50% of the medium in each
well was replaced with fresh medium (200 pl total/well). Incubation and culture conditions were
as described in Cell culture.

To estimate the outer radius, one plate for each cell line, containing 24 spheroids for each
initial spheroid size, was placed inside the IncuCyte S3 live cell imaging system (Sartorius,
Goettingen, Germany) incubator (37°C, 5% CO,) immediately after seeding the plates. In-
cuCyte S3 settings were chosen to image every 6 hours for the duration of the experiment with
the 4x objective. To estimate the radius of the inhibited and necrotic region and additional
outer radius measurements, spheroids maintained in the incubator were harvested, fixed with
4% paraformaldehyde (PFA), and stored in phosphate buffered saline solution, sodium azide
(0.02%), Tween-20 (0.1%), and DAPI (1:2500) at 4°C, on days 3, 4, 5, 7, 10, 12, 14, 16, 18,
21 and 24 after seeding. For necrotic core measurements, 12 hours prior to harvesting 1 pmol
total/well DRAQ7™ dye (Abcam, Cambridge, United Kingdom. ab109202) was added to each
well [114][218]. Fixed spheroids were set in place using low melting 2% agarose and optically
cleared in 500 ul total/well high refractive index mounting solution (Quadrol 9 % wt/wt, Urea
22 % wt/wt, Sucrose 44 % wt/wt, Triton X-100 0.1 % wt/wt, water) for 2 days in a 24-well glass
bottom plate (Cellvis, P24-1.5H-N) before imaging to ensure accurate measurements [47}[222].
Images were then captured using an Olympus FV3000 confocal microscope with the 10x ob-
jective focused on the equatorial plane of each spheroid.

Image processing. Images captured with the IncuCyte S3 were processed using the ac-
companying IncuCyte 2020C Rev1 software (spheroid analysis type, red image channel, largest
red object area per well). Area masks were visually compared with IncuCyte brightfield images

to confirm accuracy. Area was converted to an equivalent radius (r?> = A/x). Confocal mi-
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croscopy images were converted to TIFF files in Imaged and then processed with custom

MATLAB scripts that use standard MATLAB image processing toolbox functions. These scripts

are freely available on Zenodo with DOI{10.5281/zenodo.5121093] [33].



https://doi.org/10.5281/zenodo.5121093
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6A.1 Mathematical model

6A.1.1 Nutrient only

Here we recall Greenspan’s mathematical model governing the evolution of R.(t), Ri(t), and
R, (t) (Figure -g). We consider conservation of mass to govern the evolution of R,(t).
Assuming: i) all living cells are identical and an incompressible mass of constant volume; ii)
cell division occurs instantaneously relative to the growth time of the tumour, and each daughter
cell occupies the same volume as any other cell; iii) the proliferation rate is a constant, s, for
cells which have sufficient nutrient; and, iv) the mass density of living cells is constant and
equal to density of necrotic debris; then conservation of mass is equivalent to conservation of

volume, giving,
A=B+C-D-E, (6A.1.1)

where A is the total volume of living cells at any time, ¢; B is the initial volume of living cells at
time t = 0; C is the total volume of cells produced in ¢ > 0; D is the total volume of necrotic

debris at time ¢; and, E is the total volume lost in the necrotic core in ¢t > 0.

Writing A, B, C, D, E in their mathematical forms and recalling that the volume and surface

area of a sphere with radius r is 473 /3 and 472, respectively, gives

A= 4?” (R3(t) - R3(1)) . (6A.1.2.1)
B = %Ri(o), (6A.1.2.2)
t rRo(t)
C= 471/ / sr? dr dt, (6A.1.2.3)
0 JR;(t)
D= %Rf’l(t), (6A.1.2.4)
t
E= 4;/ 3AR3(t) dt, (6A.1.2.5)
0

where the three inside the integral of equation (6A.1.2.5) is included for mathematical con-
venience. Substituting equations (6A.1.2.1)-(6A.1.2.5) into equation (6A.1.1) and simplifying

gives,

t rRo(t) t
R3(t) = R3(0) + 3 / / sr? dr dt — / 3AR3(t) dt. (6A.1.3)
0 JRi(t) 0

Differentiating equation (6A.1.3) with respect to time and simplifying gives the more useful
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form,

RO 2 (m - m) - AR, A1)

mass lost in necrotic core

proliferation of living cells
The other important equation concerns the evolution of nutrient within the spheroid. Rewriting

equation (6.5.1.2) gives

LQKﬁQWWQZmeJmmHmwyWLc&rs&m. (6A.15)

where H(-) is the Heaviside step function.

To determine the full evolution of the system we solve equations (6A.1.4) and (6A.1.5) to-

gether with the nutrient thresholds ¢; and ¢, which implicitly define R;(¢) and R, (), respectively,

through

c(Ri(t),t) = ai, (6A.1.6.1)
c(Ru(t),t) = cu, (6A.1.6.2)

if the nutrient concentration inside the spheroid is sufficiently small otherwise R;(t) = 0 or
R, (t) = 0. Note that the equation (6A.1.4) for nutrient does not involve any temporal derivative
so the only initial condition required to solve the full system of equations (6A.1.4) and (6A.1.5)

is the initial outer radius, R,(0).

The solution of equation (6A.1.5) is,

o YRy _ 2 ARY(®) (1 1 ,
c(r(t)) = < 6k (B5(1) )+ 3k <r Ro(t)>  Balf) <7 < Rolt), (6A.1.7)
. 0<r < Rat),
where
o 2
oo = tn = o [; (R2(t) — R2(1)) — ani (Ro(t) — Rn(t))] . (6A.1.8)

The necrotic region first forms when the nutrient concentration reaches ¢, at the centre,
which occurs when R,(t) = 0 and » = 0 in equation (6A.1.8), which gives a critical outer

radius,

R? = (oo —Cn). (6A.1.9)
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Also recall that R;(t) corresponds to ¢(R;(t),t) = ¢ which we can substitute into equation

(6A.1.7) to give,

Coo — G = % % (R2(t) — R2(t)) — R3(1) (Ril(t) . Rl(t)ﬂ . (6A.1.10)

Since the inhibited region first forms when the nutrient concentration reaches ¢; at the centre
of the spheroid and the necrotic region forms after the inhibited region, setting R,(t) = 0 and
r = 0 on right-hand-side of equation (6A.1.10) gives the outer radius when the inhibited region

first forms

R? = % (coo — c1). (6A.1.11)

We can then define a useful dimensionless quantity, Q* = R%/R? = (coo — ¢i) / (Coo — Cn),

which is related to the time when phase (ii) begins.

Equations (6A.1.4), (6A.1.5), and (6A.1.6) can now be solved in each of phase (i), (ii), and

(iii). To provide valuable insights into the structure of the solutions to the Greenspan model

it helps to consider the non-dimensional form of the equations and their solutions. To non-
dimensionalise we rescale time with s to give 7 = st and rescale lengths with R, via &,(t) =
Ro(t)/Re, &(t) = Ri(t)/Rc, and &,(t) = Ry (t)/R.. Then phase (ii) starts when &,(t) = @ and

phase (iii) starts when &,(¢) = 1. We now consider each phase in turn.

Phase (i)

In phase (i), all cells are free to proliferate and the nutrient concentration is sufficiently high,
i.e. c(r,t) > ¢ for 0 < r < R,(t), such that there is no inhibited or necrotic region (Figure
[6-1a)). Phase (i) ends when the nutrient concentration at the centre of the spheroid equals
the inhibited threshold, when ¢(0,¢) = ¢; and R, (t) = Rg.

Since Ri(t) = 0 and R, (t) = 0, equation (6A.1.4) becomes

= ZR3(¢), (6A.1.12)

giving,

Ro(t) = Ro(0) exp () . (6A.1.13)
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Non-dimensionalising gives,

- 9]
= - <7< — | =. g,
&o(7) Eo(o)exp<3), for 0<7<3log (50(0)) 71 (6A.1.14)
Given the solution in equation (6A.1.14) we determine R,(t) by reintroducing s and R.,

Ro(t) = &(st)Re, for 0<t< L. (6A.1.15)

S

Note that R;(t) = 0 and R, (t) = 0 throughout phase (i). Hence, we have obtained R, (t), R;(t), R, (t)
throughout this phase.

Phase (ii)

In phase (ii) the spheroid experiences inhibited growth due to a core of inhibited cells and outer
region of freely proliferating cells (Figure[6.7b)). Phase (ii) ends when the necrotic core forms.
Since R;(t) > 0 and R, (t) = 0, equation (6A.1.4) becomes

dRo(t) _

S
R2(¢ =z

(R3(t) — R}(t)). (6A.1.16)

Non-dimensionalising equation (6A.1.16) gives,

2 _ g ). (6A1.17)

Equation (6A.1.17) is a function of two variables, &,(7) and & (1), which we can simplify to a
function of one variable by introducing a change of variables vi(7) = &(7)/&(7), and by using
the constraint Q2/¢2(7) = 1 — y?(7), to give

3yi(7) dyi(7)
(1 =wi(7)?) (1 —wi(7)?) dr

=1, (6A.1.18)

with initial condition 3;(7) = 0 at 7 = 7; and terminating condition y;(7)> = 1 — Q2. The
constraint used to derive equation (6A.1.18) and the termination condition for phase (ii) are

obtained with the following argument. In phase (ii) equation (6A.1.10) is
R2(t) — R*(t) = R%. (6A.1.19)

Non-dimensionalising equations (6A.1.8) and (6A.1.19), using definitions of &,(7), &(7), @, and

combining the resulting expressions gives Q2 = ¢2(7) — £2(r). Rewriting in terms of y;(7) gives
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Q?/€2(t) = 1 — y2(7), which gives the constraint used to derive equation . Using the
fact that phase (ii) ends when &,(7) = 1 and rearranging gives the termination condition for
yi(7).

Numerically solving equation (6A.1.18), using MATLAB’s in-built ode15s differential equa-
tion solver with absolute and relative tolerances set to 1 x 10~%, we obtain y;(7) for phase
(ii). To obtain R,(t) we use the constraint Q?/¢2(r) = 1 — y;(7)?, and definitions of &,(7)
and &(7) to obtain Ro(t) = R.Q[1 — y?(st)}_m. Similarly using the constraints we obtain
Ri(t) = ReQ[1/ (1 — y2(st)) — 1]'/%. Recall Ry(t) = 0 throughout phase (ii). Hence, we have
obtained R,(t), Ri(t), Ry(t) throughout this phase.

Phase (iii)

In phase (iii) the spheroid experiences inhibited growth due to an outer proliferating region, an
intermediate region of inhibited cells, and a necrotic core (Figure a)). At steady state there
is a balance between the number of cells that are proliferating in the outer region and mass
lost from the necrotic core.

Since R;(t) > 0and R,(t) > 0, all terms in equation (6A.1.4) are non-zero. Non-dimensionalising
equation (6A.1.4) gives

d&o(7)
dr

&= = e - )] - 1€, (6A1.20)

where v = \/s. Equation (6A.1.20) is a function of three variables &,(7), &(7), & (7). Intro-
ducing ui(1) = &(7)/& (1) and yn(7) = & (7)/&0(T) We rewrite equation (6A.1.20) and the
non-dimensionalised forms of equations (6A.7.8) and (6A.1.10) as

yn(T) dyn(7) _ o 3 P
T+ 2m) (A —pu(r) dr yi (1) = 37y (7), (6A.1.21.1)
&2(r) = (1= ya(7)” (1+ 2ya(7)) (6A.1.21.2)
2 — T
%Q(T) =1-yi(r) = 25(7) <1y(yTg)> : (6A.1.21.3)

noting that equation (6A.1.21.1) is obtained using equation (6A.1.21.2). Then we numerically
solve equations (6A.1.21.1)-(6A.1.27.3) to obtain w;(7) and y,(7) using the the following ap-
proach. First, we substitute equation (6A.1.21.2) into equation (6A.1.21.3) to eliminate &,(7)

and rearrange which gives

0= @ [(1= () (14 2] + 1= () - 220) (S UT) . earza
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Equations (6A.1.21.1) and (6A.1.22) form a system of differential-algebraic equations which we

numerically solve using MATLAB'’s in-built ode15s solver with relative and absolute tolerances

set to 1 x 1078, Given the solution for y,(7) and yi(7) we obtain R,(t), Ri(t) and Ry(t) using
the following approach. Given y,(7) we obtain &,(7) using equation (6A.1.21.2). Then R,(t) =
R:&o(st). Using the definition of y;(7), yn(7) and &,(7) we obtain R;(t) = R.yi(st)éo(st) and
Rn(t) = Reyn(st)éo(st). Hence, we have obtained R,(t), Ri(t), Rn(t) throughout this phase.
Key software for this section is freely available on a[GitHub] repository.

Greenspan’s mathematical model assumes that tumour spheroids experience three phases
of growth [79]. While we find experimental evidence confirming that many tumour spheroids
experience three phases of growth (Figures [6.1] [6A.9] [fA.10] [fA.11] [FA.13] and [fA.14), we
also find experimental evidence suggesting tumour spheroids seeded with a higher number of
cells may form in phase (ii) (Figures[6A.12]and[6A.15). Here, we now describe how to initialise

Greenspan’s mathematical model in phase (ii) and in phase (iii). We consider phase (iii) since
calculations used for statistical identifiability analysis may choose parameters such that the

likelihood of starting in phase (iii) is evaluated.

To initialise Greenspan’s model with a spheroid in phase (ii) we first prescribe R,(0) and
recall that in phase (ii) there is no necrotic core, so R,(0) = 0. Then from equation (6A.1.10)
with R,(0) = 0, the corresponding inhibited radius is R;(0) = (R.(0)* — QQRE)W. To ini-
tialise Greenspan’s model with a spheroid in phase (iii) we first prescribe R,(0). Given R,(0)
we rewrite equation (6A.1.8) as the following cubic polynomial (2/R,(0))R,(0)* — 3R,(0)? +
R,(0)2 — R? = 0, where R, (0) is the unknown variable. We determine the three solutions of
this polynomial using the MATLAB function roots [4] and define R,(0) as the only physically
realistic real-valued solution which satisfies 0 < R,(0) < R,(0). Similarly, to obtain R;(0),
we rewrite equation (6A.1.10) as the following cubic polynomial R;(0)? + (Q?*R? — R,(0)? —
2R,(0)3/Ro(0))R;(0) + 2R, (0)2 = 0, where R;(0) is the unknown variable and R,(0) and R, (0)
are known. We then define R;(0) as the only physically realistic real-valued solution which
satisfies R,(0) < R;i(0) < R,(0). For statistical identifiability analysis we assume spheroids

may form in phase (i), phase (ii), or phase (iii).

The approach taken in phases (i), (ii), and (iii) means that we do not require knowledge of
the values of the parameters c.,cn, ci, kK and a but instead only the value of Q@ = [(coo —
ci)/(coo — cu)]Y/?. This reduces the number of parameters describing the evolution of the
spheroid from eight to five. The three pieces of information no longer consider regard the

nutrient concentration which we do not directly measure in this study and has been explored
in other studies [B0}[T55]. Furthermore, equations (6A.1.8)-(6A.1.10) show that there are con-



https://github.com/ryanmurphy42/4DSpheroids_Murphy2021
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straints on the relationships between R,(t), Ri(t), R,(t) which can be explored further.
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6A.1.2 Nutrient and waste

The model presented in methods section[6.5.7]and supplementary material fA.1.1]is a special
case of Greenspan’s model [79]. The general Greenspan model proposes the inhibited region
is a result of a build up of waste produced from live or dead cells and the necrotic region forms
due to a lack of nutrient. Here, we consider the alternative case where waste is produced
from live cells only and show that, for the measurements we obtain, it is equivalent to the
nutrient only case we consider in the main manuscript (Figure [fA.1). We do not consider
waste produced only from dead cells in this study since with that model the necrotic core must
form before the inhibited region which is not what we observe in these experiments (Figure
B-11b)).-

In comparison to the nutrient only model in supplementary material [6A.1-} the model with
nutrient and waste requires an additional equation for the evolution of waste concentration,

B(r,t). The full system of governing equations are,

R2(1) d]z)t(t) = = [R3() — max(R3(6), B(0)] — ARL(1), (6A.1.23.1)
%2% <r2§c<r(t>)> = %H(r — Ry(t)) H (Ro(t) — 1), 0<r < Ro(t), (6A.1.23.2)
%% <r2§5(r(t))> _ gH (Ru(t) = 1), 0<r<Rot), (6A.1.23.3)

where equations (6A.1.23.7) and (6A.1.23.2) are unchanged, by restricting our attention to the
case when the inhibited region forms before the necrotic region, and equation (6A.1.23.3) is
new. In equation (6A.1.23.3), the term on the right-hand-side corresponds to production of

waste by live cells at a constant rate per unit volume P that diffuses with diffusivity «. Fur-

thermore, R;(t) is defined as the solution of 3(R;(t),t) = f; if a solution exists and R;(t) = 0
otherwise.
This model, with nutrient and waste, is equivalent to the nutrient only model when we focus

on the five key parameters R,(0), R., s,, @ governing the dynamics. The only difference is a

new definition of @,

02— ik a
\]i/ k(coo — Cn) (6A.1.24)

waste parameters oyygen parameters

This new definition of @ provides a different interpretation of the data since Q now represents a
combination of waste and nutrient parameters. Importantly, with this new definition of @) there

are two cases to consider: i) @ < 1, and ii) @ > 1. Previously, we only considered case (i). In
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Build up of waste produced from Lack of nutrient forms necrotic
live cells forms inhibited region region

(@) (b)

© A @A

n Eeee——-—

Waste concentration
Nutrient concentration

—>»>

0 0

0 R.(1) R(@{) R (1) 0 R.(1) R({®) R,(1)

Radius [m] Radius [pm]

Figure 6A.1: Greenspan’s model with waste and nutrient. (a),(c) Build up of waste from live cells results
in the formation of an inhibited region. (a) Schematic of waste produced from live cells and diffusing to
the external environment. (c) Snapshot of waste concentration against spheroid radius for a spheroid
in phase (iii). R;i(t) is determined by the inhibited waste threshold 5;. (b),(d) Lack of nutrient forms
the necrotic region. (b) Nutrient, shown in orange, diffusing into the spheroid. (d) Snapshot of nutrient
concentration against spheroid radius for a spheroid in phase (iii). R,(t) is determined by the necrotic
nutrient threshold ¢,,. External nutrient concentration is c...
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case (ii) where @ > 1 the necrotic core forms before the inhibited region. We do not observe
this scenario in the experiments that we perform and therefore we restrict the attention of this

study to case (i) with @ < 1.
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6A.2 Profile likelihood further details

6A.2.1 Numerical method

Parameter identifiability using statistical profile likelihood analysis is outlined in the methods

section[6.5.2] We now provide further details.

We partition the full set of observations y° into sets of observations 9, y5, and y{ corre-
sponding to experimental measurements of R,(t), R,(t), and R;(t). For computational accu-

racy, we perform calculations using the log-likelihood which is, assuming data independence,

No N,
1(0;9°) = Zlog [f(yg,ﬁ Z/O,j(G),Ug)} + Zlog [f(yg,j; ynd-(e)’gﬁ)]
" ! (6A.2.1)
+ > log [£(y2yi14(0), 09)]
=1

where y, ;(6),yn ;(6), and y; ;(#) are values of R,(t), Rn(t), and R;(t) generated from Greenspan’s
deterministic mathematical model and evaluated at time points corresponding to the experi-
mental observations v ;. v, ;, and 7, respectively; f(z; u, o?) denotes a Gaussian probability
density function with mean p and variance o2, calculated using MATLAB'’S normpd£ function ;
N,, Ny, and N; denote the total number of experimental observations of R, (t), R,(t), and R;(t),
respectively; and, 02,02, and o? correspond to pooled variances of the three measurement
types R, (t), Ru(t), and R;(t), respectively . We approximate o2 ~ s2,02 ~ s2, and
o? ~ s?, where s2,s2,s? are pooled sample variances of the outer, necrotic, and inhibited

radius measurements, respectively [31]. The pooled sample variance for the outer radius is

defined as

No
s = N1 > (yf;,j — ﬂ)z , (6A.2.2)

where yg ; is the 41 observation in yo and E is the sample mean of y2 corresponding to the

time at which the ;" measurement was observed. We define s2 and s? similarly.

The maximum likelihood esimate (MLE), 0, is defined as,

6 = argmax [ (0; yo)] , (6A.2.3)
0
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which we determine by numerically solving the equivalent minimisation problem,
6 = argmin - (G;yo)] ) (6A.2.4)
0

By assuming the full parameter 6 can be partitioned into an interest scalar parameter, ¢, and

a nuisance vector parameter, ¢, the profile log-likeilihood is

No Al
lp (w7 yo) = m(bax |:Z IOg [f(y((ij; yo,j(¢7 (b)? 0_2)] + Z IOg [f(yg7j7 yn,j(¢7 ¢)7 0121)]
FlN i=1 (6A.2.5)
+ ) log [£(uf i w15 (0, 0), 07)] ]
j=1

Given the five-dimensional parameter space that we are searching to find the maximum
likelihood estimate and the four-dimensional parameter space we search to find profile like-
lihoods, we sequentially determine the maximum likelihood estimate (MLE) and profile likeli-
hoods. All subsequent minimisation optimisations are performed using functions in MATLABs
global optimisation toolbox. Specifically, we use the GlobalSearch function [146] where we
create the following optimisation problem structure. We set the local solver to be the fmincon
function using the sequential quadratic programming (sqp) algorithm, MaxIterations = 2500
and MaxFunctionEvaluations = 5000. The objective function is defined as the argument of
the minimisation of the right hand side of equation (6A.2.4). Other non-default settings that
we vary, include NumTrialPoints, MaxTime, FirstGuess, lowerbounds, upperbounds, along
with the method we use to find the MLE and approximate 95% confidence intervals are now

discussed.

1. Firstly, we search for MLE. We set the lowerbounds and upperbounds in agreement
with the simple parameter bounds defined in the methods section By setting
NumTrialPoints = 5000 and MaxTime = 7200 [seconds], we search for the maximum likeli-
hood estimate for 2 hours with the FirstGuess as (Q, 7, s, Re, Ro(0)) = (0.9, 3,0.5,175,125).
This gives the first estimate for the maximum likelihood estimate 6,. However, numerical
experimentation indicates this first estimate is not always an accurate estimate of the true
MLE.

2. Secondly, we partition the simple parameter bounds into two sets: [1owerbounds,é1]
which we refer to as the lower set, and [él,upperbounds] which we refer to as the up-
per set. We then discretise each lower and upper set uniformly using 20 grid points,

including the end points. Starting at the grid point associated with ; we set FirstGuess
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= 61, NumTrialPoints = 2000 and MaxTime = 900 [seconds] in the GlobalSearch function.
We then move to the next closest grid point and adjust FirstGuess. If we are at the
closest grid point to 6; we set FirstGuess to be the solution at the previous gridpoint.
If we are at any other grid point we make a first order approximation of the first guess
by linear extrapolation of the values obtained from the two previous grid points. Before
using the first order approximation as a first guess we also check that the value remains
within the parameter bounds and if it does not we set FirstGuess to be the solution at the
previous gridpoint. After calculating the likelihood at each point in the lower and upper

set we combine these together to form the first approximation for the profile likelihood.

. Thirdly, we calculate an estimate of the confidence intervals using a profile likelihood
threshold value of 0.15, which can be approximately calibrated via simulation or the y? —
distribution [180]. Specifically, we start at either end of the simple parameter bounds until
we determine the first grid point where the normalised profile likelihood, L, (v;y°) =
exp <lp (¥;9°) — max [ (6; yo)]> is greater than 0.15. We then set new lower and upper
bounds as being two grid points to the left or right of that location, respectively. Note that
a more sophisticated approach to determine the approximate 95% confidence intervals is
applied in step seven to compute the results shown in Table [A.3] which is not required

here.

. Fourth, we repeat the search for the maximum likelihood estimate using the new lower

and upper bounds with the same settings as we first used.

. Fifth, we repeat the calculations for the profile likelihoods using the new lower and upper

bounds.

. Sixth, we determine the maximum likelihood estimate to be the value across all calcu-
lations which maximises the likelihood. We form the final profile likelihood from steps

two and four and present in figures the normalised likelihood function, L, (v;y%) =
exp <lp (w; yo) — meax [ (9; yo)]>.

. To compute approximate 95% confidence intervals for each parameter, as shown in Table
we form the profile likelihood from steps two and four. Next, we start at either end of
the simple parmater bounds until we determine the first grid point where the normalised
profile likelihood, L, (v;3") = exp <lp (¥;9°) —mgmx[(@;yo)o, is greater than profile
likelihood threshold value of 0.15 [T80]. These two grid points are a first approximation

of the lower and upper 95% confidence interval boundaries. Finally, to obtain a more



CHAPTER 6A. SUPPLEMENTARY MATERIAL 258

accurate estimate of the approximate 95% confidence interval boundaries, we consider
each of these two grid points in turn as the FirstGuess for the MATLAB function fsolve [],

and use linear interpolation, with the MATLAB function interp1 [2].
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6A.2.2 Parameter bounds

To interpret s we consider the evolution of the tumour spheroid in phase (i). Equation (6A.1.13)

can be written in terms of volume V(t), recalling that the volume of a sphere is 47 R3(t)/3, as
V(t) = V(0) exp(st), (6A.2.6)

where V(0) = 47R3(0)/3. Then by letting T' define the time when V(T') = 2V(0), we relate s

S = Og ( )_ .2 .;

Then assuming that the doubling time is greater than 12 hours (= 1/2 day) we obtain an upper
bound of s as 2log,(2) [day~!] ~ 1.39 [day—!]. Preliminary exploration cofnirms this estimate

is very conservative so we set the upper bound to unity.
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6A.2.3 Pooled sample variances

To identify parameters we assume distinct pooled sample variances for the outer, necrotic, and

inhibited radius measurements, as opposed to a single pooled variance for all measurements.

In Figure [6A.2] we plot the pooled sample variances for different experimental designs which

justify the use of a variance for each measurement type.
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Figure 6A.2: Variances o2, o2, and o7, for outer, necrotic and inhibited radii, respectively. Results
shown for WM793b spheroids, using Design 3 and Temporal Resolution C, formed with (a) 1250, (b)
2500, (c) 5000, (d) 10000 cells per spheroid, respectively.
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6A.3 Experimental data

6A.3.1 Outer radius experimental measurements and images

The IncuCyte S3 live cell imaging system is a useful tool that we use to obtain many outer
radius measurements. The other outer radius measurements are obtained from confocal mi-
croscopy.

We start with 24 spheroids in the IncuCyte S3 live cell imaging system for each cell line
and initial spheroid size and image every 6 hours for the duration of the experiment. However,
some measurements could not be obtained primarily due to blurring of the automated imaging,
spheroids not forming properly, or spheroids losing their structural integrity at very late time. In
Table [6A.T] we show the total number of measurements obtained at 24 hour intervals starting
from Day O which corresponds to the time that we determined as when spheroid formation
ends and growth begins (Supplementary Material [BA.3.7). In Figures [6A.3}6A.5] we present
representative experimental images obtained from IncuCyte S3 live cell imaging system for

different days and WM793b, WM983b, and WM164 cell lines, respectively.

WM793 WM983b WM164

Day 1250 2500 5000 10000 2500 5000 10000 1250 2500 5000 10000
0 20 24 24 23 24 22 23 23 22 23 21
1 20 23 24 23 24 22 23 24 22 24 21
2 20 23 24 23 24 22 23 18 22 24 20
3 21 23 24 23 24 22 23 19 23 24 20
4 21 24 24 23 24 22 23 18 23 24 20
5 21 23 24 23 24 22 22 19 20 19 -
6 21 24 24 23 24 22 21 19 19 19 -
7 21 24 24 23 23 22 20 - - - -
8 21 24 24 23 23 22 20 - - - -
9 21 24 24 23 23 22 20 - - - -
10 21 24 24 23 23 22 20 - - - -
11 21 24 24 23 23 22 20 - - - -
12 21 24 24 23 22 22 20 - - - -
13 21 24 24 23 22 22 20 - - - -
14 21 24 24 23 - - - - - - -
15 20 24 22 23 22 22 20 - - - -
16 18 24 22 23 22 22 20 - - - -
17 18 24 22 23 22 22 20 - - - -
18 19 24 22 23 22 22 20 - - - -
19 19 24 22 23 22 22 20 - - - -
20 13 24 13 11 - - - - - - -

Table 6A.1: Number of outer radius measurements obtained from the IncuCyte S3 live cell imaging
system for the cell lines WM793b, WM983b, and WM164. Day 0 corresponds to the time that we
determined as when spheroid formation ends and growth begins, see supplementary material
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Figure 6A.3: Snapshots of WM793b tumour spheroids from IncuCyte S3 live cell imaging system at 0,
2,4,6,8,10,12, 14, 16, 18, and 20 days after formation for tumour spheroids formed with 1250, 2500,
5000, and 10000 cells per spheroid. Each image shows a 4.34 x 3.25 mm field of view.
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Figure 6A.4: Snapshots of WM983b tumour spheroids from IncuCyte S3 live cell imaging system at 0,
2,4,6,8,10,12, 16, 18, and 19 days after formation for tumour spheroids formed with 2500, 5000, and
10000 cells per spheroid. Each image shows a 4.34 x 3.25 mm field of view.
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WM164
1250 2500 5000 10000

Day

Figure 6A.5: Snapshots of WM164 tumour spheroids from IncuCyte S3 live cell imaging system at 0,
1, 2, 3, 4, 5, and 6 days after formation for tumour spheroids formed with 1250, 2500, 5000, and 10000
cells per spheroid. Each image shows a 4.34 x 3.25 mm field of view.
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Spheroid formation duration

In Figure [6A.6| we show time snapshots of forming tumour spheroids obtained in the IncuCyte
S3 live cell imaging system. These snapshots, alongside monitoring the evolution of the outer
radius obtained from image processing, validate the assumption that the tumour spheroids
have formed 4 days after seeding for WM793b. This method was also used to determine the
duration of spheroid formation for the WM983b (Figure and WM164 (Figure cell

lines.
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WM793b

1250 2500 5000 10000
Day

Figure 6A.6: Spheroids are formed 4 days after seeding for WM793b. Snapshots from IncuCyte S3 live
cell imaging system at -4, -3, -2, -1, 0, and 1 days after formation for tumour spheroids formed 1250,
2500, 5000, and 10000 cells per spheroid. Each image shows a 4.34 x 3.25 mm field of view.
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WM983b

2500 5000 10000
Day

Figure 6A.7: Spheroids are formed at 2 days after seeding for WM983b. Snapshots from IncuCyte S3
live cell imaging system at -2, -1, 0, 1, and 2 days after formation for tumour spheroids formed with
2500, 5000, and 10000 cells per spheroid. Each image shows a 4.34 x 3.25 mm field of view.
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WM164

1250 2500 5000 10000
Day

Figure 6A.8: Spheroids are formed at 3 days after seeding for WM164. Snapshots from IncuCyte S3
live cell imaging system at -3, -2, -1, 0 and 1 days after formation for tumour spheroids formed with
1250, 2500, 5000, and 10000 cells per spheroid. Each image shows a 4.34 x 3.25 mm field of view.
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6A.3.2 Confocal microscopy

Measurements

In Table [A.2] we show the number of confocal measurements obtained. Spheroids damaged

during harvesting and fixing procedures are not included.

WM793 WM983b WM164
Day | 1250 2500 5000 10000 2500 5000 10000 | 1250 2500 5000 10000
0 5 5 12 7 - - - - - - -
1 4 10 11 12 6 9 6 6 4 14 6
2 - - - - 12 9 10 13 10 10 9
3 5 22 23 18 12 10 9 - - - -
4 - - - - - - - 13 8 - -
5 - - - - 20 15 18 - - -
6 7 28 25 25 - - - - - - -
7 - - - - - - - - - - -
8 12 27 20 23 16 13 15 - - - -
9 - - - - - - - - - - -
10 8 19 21 15 16 17 21 - - - -
11 - - - - - - - - - - -
12 12 18 19 17 13 14 13 - - - -
13 - - - - - - - - - - -
14 15 19 22 21 17 21 19 - - - -
15 - - - - - - - - - - -
16 - - - - 11 20 19 - - - -
17 11 15 14 5 - - - - - - -
18 - - - - - - - - - -
19 - - - - 25 31 16 - - - -
20 22 23 21 20 - - - - - - -

Table 6A.2: Number of spheroids imaged using confocal microscopy for the cell lines WM793b,
WM983b, and WM164. For each imaged spheroid we obtain a measurement of the outer radius, inhib-
ited radius, and necrotic radius. Day 0 corresponds to the time for the each cell line that we determined
as when spheroid formation ends and growth begins. Measurements were taken on days days 3, 4,
5,7,10, 12, 14, 16, 18, 21 and 24 after seeding, and appear on different days in the table due to the

different formation times.



CHAPTER 6A. SUPPLEMENTARY MATERIAL 270

6A.3.3 Confocal microscopy supplementary experimental images

Here we present confocal microscopy images of spheroids formed with the WM793b, WM983Db,
and WM164 cell lines. In the images we outline each spheroids outer boundary, inhibited

region, and necrotic region.

WM793b

WM793b - 1250
Day

10

12

14

17

20

Figure 6A.9: Experimental images of WM793b tumour spheroids formed with 1250 cells per spheroid.
Each image shows a 800x800 um field of view.
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Figure 6A.10: Experimental images of WM793b tumour spheroids formed with 2500 cells per spheroid.
Each image shows a 800x800 um field of view.
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Figure 6A.11: Experimental images of WM793b tumour spheroids formed with 5000 cells per spheroid.
Each image shows a 800x800 um field of view.
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Figure 6A.12: Experimental images of WM793b tumour spheroids formed with 10000 cells per
spheroid. Each image shows a 800x800 um field of view.
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Figure 6A.13: Experimental images of WM983b tumour spheroids formed with 2500 cells per spheroid.
Each image shows a 800x800 um field of view.
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Figure 6A.14: Experimental images of WM983b tumour spheroids formed with 5000 cells per spheroid.
Each image shows a 800x800 um field of view.
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Figure 6A.15: Experimental images of WM983b tumour spheroids formed with 10000 cells per
spheroid. Each image shows a 800x800 um field of view.
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WM164

Day WM164 - 1250

Day WM164 - 2500

Day WM164 - 5000

Day WM164 - 10000

Figure 6A.16: Experimental images of WM164 tumour spheroids formed with 1250, 2500, 5000, and
10000 cells per spheroid. Each image shows a 800x800 um field of view.
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3D rendering

Here we present a 3D rendering of a confocal microscopy image z-stack of half of a FUCCI-

melanoma WM793b spheroid 17 days after formation with 5000 cells.

Figure 6A.17: 3D rendering of half of a FUCCIl-melanoma WM793b spheroid 17 days after formation
with 5000 cells. Scale bar 200 um.
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6A.4 WM793b additional results

6A.4.1 Results in tables

In all figures with profile likelihoods we include a red-dashed horizontal line at 0.15 indicat-
ing the 95% confidence interval threshold value [[180]. Here, in Table [6A.3] we present the
corresponding MLE’s and approximate 95% confidence intervals for a range of experimental

designs.



280

'saoe|d [ewioap a4y} 0} UMOYS S)Nsay "subisap |eluswiiadxd Jo abuel B 10} S[eAlslul 90UdpLU0D %66 dlewixoldde pue salewiss Ajdy| 1SO :£v9 algeL

LL1'88Y ‘109°0SY) 2L9 L.y | (VE0'8ES 'LEV'B61LG) 266825 | (¥6€°0 ‘922°0) £82°0 | (000°9 ‘01L0°0) 20 | (9€2°0 'G99°0) L0L°0 | TN 0000+ V S8Y €

CHAPTER 6A. SUPPLEMENTARY MATERIAL

0€9'0.€ ‘200°6€€) LG€'GSE | (000°009 ‘L06°82Y) €GL°vEY | (82¥°0 ‘862°0) 08€0 | (0009 ‘0L0°0) S9¢°L | (02270 ‘0€S°0) GEL°0 3TN 000GV S8Y €
092'S82 ‘188°€92) ¢98'G/2 | (9GE°€9€ ‘I¥9°1GE) G0E°LGE | (£L8¥°0 ‘€8€°0) 6+¥°0 | (900°}+ ‘0+0°0) 0LO0 | (2¥8°0 ‘622°0) €180 JTN 00SC V SeYd €
821°'8€¢ '29/°22e) gee0ee | (G1L°SEE '¥8E'GIE) ev8'GeE | (S9¥°0 ‘86€°0) OEY 0 ¥'0 ‘0+0°0) 010°0 | (€26°0 '958°0) +68°0 31N 0SC1 ¥V S8Y € oS YILINM
699'L6} ‘€LOE8L) ¥IG L8} | (PL6'Che '€68°G02) 0L¥'602 | (86E°0 ‘I¥E0) 89E°0 G0 ‘G/¥°0) L1G0 | (298°0 ‘818°0) +¥8°0 | ITN 0000} V Sed €

€€€°0 '00€°0) 91€°0 ¥'0 '99€°0) 86€°0

9€€°0 ‘¥0E0) 6LE°0

€8'0 ‘G18°0) ¥28°0 31N 000G V S8Y €
¥'0 '¥€€°0) S6€°0 | (228'0 ‘622°0) L08'0 3TN 00SC WV S8Y € 6E€S | 9E86INM

GL0'6S+ '¥89°2G}) 6¥6°GG} | (9G}1'Che '891'802) 022042

G¥2'9ce ‘Ge8'612) 811'€22 | (928'S5¢C 85+ 1G2) ¢69'€G2 | (191°0 ‘6E€H0) 6710 €'+ '6+6°0) 0L+ | (9¥8°0 ‘918°0) 2€8°0 | TN 0000} V S8H €

)
v)
)
)
2)
)
60€1€} '821'Gel) v22'82) | (LYO'VI2 '6.9'G02) ¥2L'602
)
2)
2)
)
)
)

) ( )
) (0 )
) (2 )
o ) (e )
o ) (@ )
v ) (2 )
m ) (2 )
ee ) (9 )
110 ‘0L0°0) 0L0°0 | (¥82°0 ‘€52°0) 024270 311N 000S V S8d €
¥9°0 ‘0L0°0) 0LO0 | (8 )
0 ) (6 )
1 ) 6% )
9 ) (0 )
0 ) (0 )
0 ) (0 )
0 ) A )

( ) ( ( )
( €) (0 (8 ) (0
( ) (9 (2 ) (9
( ) (g (g ) (8
( ) % (8 ) (@
( ) ( (e ) (g
( ) (£ (9 ) (2
( ) (9 ( ) (e
Mmo:m: 8.1 mtw €8/°8/1 M 68°292 ‘80¥°2S2) 2/9°092 M%_ 0 mm:ow 6510 Mo
L
( ) (g ( ) (
( ) (6 ( ) (
( ) (e ( ) (
( ) (0 ( ) (
( ) (0 72 ) (
( ) ( (0 ) (
[ [ [, L

Yo ovL ‘YL LvL) L62°evL | (Ly1'6G2 £09°€G2) 818952 | (ZG1°0 ‘G¥10) 0G40 8€8°0 ‘218°0) 628°0 3TN 0052 V s8d €
G/8'62} ‘65¥'2eh) 001921 | (Set'9S2 ‘S81°eve) 25052 | (L1°0 ‘9210) ¥EL0 09°0L0°0) 0+0°0 | (698°0 ‘¥28°0) L¥8°0 3N 0SCL V S8Y € ¥ | 9E6LIAM
2oL 181 ‘821°9/1) €€2'821 | (668292 ‘801°2G2) 229092 | (991°0 ‘€51°0) 6540 1’0 ‘01L0°0) 0LO0 | (#8270 ‘€G2°0) 0LL0 VvV sed ¢
280°/81 ‘268 181) EvS¥81L | (€L£°6G2 ‘P81 ¥S2) 9G0°2G2 | (EE1L°0 “121°0) 9210 2’} ‘662°0) ¥26°0 | (000"} ‘0¥6°0) 000"} VSed ¢ € | 9E6LIAM
092'S81 ‘Lee 181) GL'egl | (000°0S€E ‘981°€02) 001'852 | (#¥1°0 ‘821°0) ¥E1°0 09 ‘0L0°0) ¥8+°0 | (000 }+ ‘609°0) G88°0 osed |
0/%'981 ‘G95'8/ 1) 0v6°28) | (000°0GE ‘¥/5'S8) G2L'2IE 2€0 '821°0) EV10 09°0L0°0) 0L0°0 | (000} “0S55°0) G290 gsey |
G28'98| ‘8l 1'641) 605°€8) | (000°0SE ‘000°G2) 086°662 000°L ‘/21°0) k10 09 ‘0L0°0) 020°0 | (000} ‘62%°0) LEZ'0 Vv seY | 2 | 9EB6LIAM
wrl] (0)°y wrl] °y _Rep] s ubisaq |eluswiiedxy | ainbi4 aul| 199



CHAPTER 6A. SUPPLEMENTARY MATERIAL 281

6A.4.2 Measurement times and experimental duration

Figure [6.1] shows that varying the temporal resolution in Design 1 is not sufficient to predict

necrotic and inhibited radii. Here, in Figures [6A.18]and [6A.19] we show that varying the tem-

poral resolution using Designs 2 and 3, respectively, gives consistent results across temporal

resolutions A, B, and C.

Next we consider four additional experimental designs that use different temporal measure-

ments
» Temporal Resolution D: the first 4 days (Day 1, 2, 3),
» Temporal Resolution E: the first 10 days (Day 1, 2, 3,4, 5,6, 7, 8, 9, 10),
» Temporal Resolution F: the last 10 days (Day 10, 11,12, 13, 14, 15, 16, 17, 18, 19),
» Temporal Resolution G: the last 4 days (Day 16, 17, 18, 19),

In Figures [6A.20] and [6A.21] we present results for the WM793b cell line for spheroids formed
with 1250 and 5000 cells, respectively. These results show that using Temporal Resolution D

is not sufficient to predict late time behaviour (Figure [fA.20k, Figure fA.2T) and Temporal

Resolution E can also not be sufficient to predict late time behaviour (Figure |6A.20f). Similarly,

using late time experimental measurements, as in Temporal Resolutions F and G, is insufficient

to determine tumour spheroid structure at early times (Figure [6A.21-h).
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Experimental data used
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Figure 6A.18: Increasing times when outer and necrotic radius is measured gives consistent informa-
tion. (a)-(c) Experimental data used in Design 2 with Temporal Resolutions A, B, and C. Profile likeli-
hoods for (e) s, (f) R., (9) v, (h) Q. Yellow, blue, and orange lines in (e)-(h) represent profile likelihoods
from Design 2 with Temporal Resolutions A, B, and C, respectively. (i)-(k) Comparison of Greenspan
model simulated with maximum likelihood estimate compared to full experimental data set for Design 2
with Temporal Resolutions A, B, and C, where error bars show standard deviation.
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Experimental data used
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Figure 6A.19: Increasing times when outer, necrotic and inhibited radius and necrotic is measured
gives consistent information. (a)-(c) Experimental data used in Design 3 with Temporal Resolutions A,
B, and C. Profile likelihoods for (e) s, (f) Re, (9) v, (h) Q. Yellow, blue, and orange lines in (e)-(h) represent
profile likelihoods from Design 3 with Temporal Resolutions A, B, and C, respectively. (i)-(k) Comparison
of Greenspan model simulated with maximum likelihood estimate compared to full experimental data
set for Design 3 with Temporal Resolutions A, B, and C, where error bars show standard deviation.
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Experimental data used
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Figure 6A.20: Design 3 with temporal Resolutions D, E, F, and G for WM793b tumour spheroids formed
with 1250 cells per spheroid. (a)-(d) Experimental data used in Design 3 Temporal Resolutions D, E,
F, and G, respectively. (e)-(h) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set for Design 3 Temporal Resolutions D, E, F, and G,
respectively, where error bars show standard deviation. Profile likelihoods for (i) R,(0), (j) s, (k) R, (I)
v, (M) Q. Yellow, orange, blue, and purple lines in (e)-(h) represent profile likelihoods from Designs 3
Temporal Resolutions D, E, F, and G, respectively.
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Experimental data used
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Figure 6A.21: Design 3 with temporal Resolutions D, E, F, and G for WM793b tumour spheroids formed
with 5000 cells per spheroid. (a)-(d) Experimental data used in Design 3 Temporal Resolutions D, E,
F, and G, respectively. (e)-(h) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set for Design 3 Temporal Resolutions D, E, F, and G,
respectively, where error bars show standard deviation. Profile likelihoods for (i) s, (j) Ro(0), (k) R, (I)
v, (m) Q. Yellow, orange, blue, and purple lines in (e)-(h) represent profile likelihoods from Designs 3
Temporal Resolutions D, E, F, and G, respectively.
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6A.4.3 Profile likelihoods for R,(0)

To perform statistical identifiability analysis we we treat the initial outer radius, R,(0), as a
parameter. Here, in Figure we show that profile likelihoods for R,(0) are consistent

across temporal resolutions and experimental designs.

(@) Corresponding to Figure 2 with 5000 data (b) Corresponding to Figure 3 with 5000 data
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Figure 6A.22: Profile likelihoods for R,(0)
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6A.4.4 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii

In Figure [6.2] we compare Design 1 with Temporal Resolutions A, B, and C for the WM793b

cell line formed with 5000 cells. Here, in Figures[6A.23] [6A.24] and[6A.25] we compare Design
1 with Temporal Resolutions A, B, and C for the WM793b spheroids formed with 1250, 2500,

and 10000 cells, respectively. These results show that Design 1 is not a reliable design and

that outer radius measurements are not sufficient to predict inhibited and necrotic radii.



CHAPTER 6A. SUPPLEMENTARY MATERIAL 288

Experimental data used
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Figure 6A.23: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Re, (i) v, (j) @. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
1250 cells per spheroid.
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Experimental data used
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Experimental data used
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Figure 6A.25: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Re, (i) v, (j) @. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
10000 cells per spheroid.
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6A.4.5 Cell cycle data are informative

In Figure [6.3)we compare Designs 1, 2, and 3 for the WM793b cell line formed with 5000 cells.
Here, in Figures [6A.26] [6A.27] and [6A.28] we compare Designs 1, 2, and 3 for the WM793b

spheroids formed with 1250, 2500, and 10000 cells, respectively. These results also show that

Design 3 provides most insight.
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Experimental data in increasing order of difficulty to obtain
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Figure 6A.26: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Re, (i) 7, (j) @. Yellow, orange, blue lines in
(9)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
1250 cells per spheroid.
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Experimental data in increasing order of difficulty to obtain
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Figure 6A.27: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Re, (i) 7, (j) @. Yellow, orange, blue lines in
(9)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with

2500 cells per spheroid.
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Experimental data in increasing order of difficulty to obtain
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Figure 6A.28: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Re, (i) 7, (j) @. Yellow, orange, blue lines in
(9)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
10000 cells per spheroid.
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6A.5 Synthetic data: WM793b

To confirm that profile likelihood analysis works as expected, we generate synthetic data from
Greenspan’s mathematical model using known parameters. We then explore when these
known parameters are recovered using the varying experimental designs considered in the
main manuscript: Design 1 with varying temporal resolutions (Supplementary Material [pA.5.7);
comparing Design 1, Design 2 and Design 3 (Supplementary Material fA.5.2), and exploring
the role of initial spheroid size and also here experimental duration (Supplementary Material
[BA.5.3). Since Greenspan’s model may be misspecified, and may not capture all of the bi-
ological details of tumour spheroid growth, the fact that these results for synthetic data are
consistent with those from experimental data enhances our confidence that key biological fea-
tures are captured in Greenspan’s model. Furthermore, when generating synthetic data there
is additional flexibility so we also explore what may happen if we were to spend significantly
more time collecting measurements (Supplementary Material [6A.5.4).

To generate synthetic data, we use the MLE from Design 3 Resolution C applied to experi-
mental data obtained from WM793b spheroids each formed with 5000 cells: (R, s,7, @, Ro(0)) =
(254.366, 0.1532, 0.045, 0.797, 179.550). First, we simulate Greenspan’s deterministic mathe-
matical model with these known parameters. Next, to obtain one noisy synthetic outer radius
measurement we record the outer radius from Greenspan’s model generated from the known
parameters at one time point. Next, we sample a normal distribution with zero mean and vari-
ance given by experimentally obtained outer radius pooled sample variance s2 = 9.35. We add
this sampled noise to the recorded outer radius measurement. We repeat this process to ob-
tain additional outer radius measurements. Similarly, we repeat this process to obtain necrotic
and inhibited radius measurements, using experimentally obtained pooled sample variances
s2 = 15.89, and s? = 33.12, respectively. We generate 10 measurements, or 48 when explor-
ing the role of additional measurements in supplementary material of the outer radius,

inhibited radius and necrotic radius every half day from day 0 to day 20.

6A.5.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii

Similarly to Figure we observe in Figure that outer radius measurements are not
sufficient to predict inhibited and necrotic radii. Simulating Greenspan’s model with the MLE
from Design 1 Time Resolution A (Figure [6A.29d) and with Design 1 Time Resolution B (Fig-

ure [6A.29) shows the time evolution of the outer radius is captured but the time evolution
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of the inhibited and necrotic region are not. However, simulating Greenspan’s model with the
MLE from Design 1 Time Resolution C (Figure [fA.29f) appears to capture the time evolution
of the outer, inhibited, and necrotic radii. However, inspecting the profile likelihoods in Figures
[6A.290-j shows that, while the known parameters are captured, the profiles are wide suggest-
ing that parameters are non-identifiable. This means that many parameter values give a similar
match to the outer radius experimental data and these parameters do not necessarily agree

with the inhibited and necrotic radii measurements.
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Figure 6A.29: Synthetic data shows that outer radius measurements are not sufficient to predict inhib-
ited and necrotic radii. (a)-(c) Synthetic data used in Designs 1 with Temporal Resolutions A, B, and C.
(d)-(f) Comparison of Greenspan model simulated with maximum likelihood estimate compared to full
synthetic data set. Profile likelihoods for (g) s, (h) R., (i) 7, (j) Q. Yellow, blue, and orange lines in (g)-(j)
represent profile likelihoods from Design 1 with Temporal Resolutions A, B, and C, respectively. Black
dashed lines in (g)-(j) show known parameters used to generate the synthetic data.
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6A.5.2 Cell cycle data are informative

Similarly to Figure[6.3] Design 3 provides most insight and best captures the known parameter

values used to generate the synthetic data (Figure [6A.30).
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Synthetic data in increasing order of difficulty in experiments to obtain

(a)400 Design 1 (b) Design 2 (c) Design 3
= : ;
300 ' : ' ' .
g | | Lo,
3 200, | y i g ! P i
] : . .
& 100 | . .
. Lt i
0 5 10 15 20 0 5 10 15 20 O 5 10 15 20
Time [days] Time [days] Time [days]
Maximum likelihood estimate
(d)400 Design 1 (e) Design 2 4] Design 3 ]
e ™ il
- 300 Hﬁ?igigiﬁfﬁi[mlﬂﬂ {.}*"ﬂxy—ﬁﬁhﬂmm‘ H,;g&‘ﬁ% QHI}H .
= e - ¥ o I ﬂ{{‘
E 100 ¢ H{m{]{ ,ﬁfﬁflﬁ I | /ﬁﬂﬁ { HK{H'PEP HB}H{&P
1 }
il M duﬂﬂ..m
00 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time [days] Time [days] Time [days]
Profile likelihoods
()] HE (h) H
1 10+ :
2 05
0.0 0.52 0.4 0.6 0.8 1.0 0.0 100 200 300
s [day] R, [um]
0)
%
c
2 3 4 5 6 .
mmem Actual garameters Design 1 mmmmm= Design 2 N mmmm  Design 3

Figure 6A.30: Synthetic data shows that measuring the necrotic and inhibited radius provides valuable
information. (a)-(c) Synthetic data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model
simulated with maximum likelihood estimate compared to full synthetic data set for Designs 1, 2 and
3. Profile likelihoods for (g) s, (h) R, (i) v, (j) Q. Yellow, orange, blue lines in (g)-(j) represent profile
likelihoods from Designs 1 low temporal resolution, 2, and 3, respectively. Black dashed lines in (e)-(h)
show known parameters used to generate the synthetic data.
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6A.5.3 Role of initial spheroid size and experiment duration

In Greenspan’s model a change in the initial radius, R,(0), corresponds to a shift in time (Figure
6A.31R). We now consider the role of initial spheroid size and experiment duration. As before,
we use the MLE from spheroids formed with 5000 cells per spheroid to generate synthetic
data. To generate synthetic data for spheroids formed with 1250, 2500, and 10000 cells per
spheroid we use the MLE obtained from spheroids formed with 5000 cells per spheroid and
only update R,(0). To update R,(0) we use the MLE from Design 3 applied to experimental
data obtained from WM793b spheroids formed with 1250, 2500, and 10000 cells per spheroid,
respectively.

We assume that each experiment is performed to Day 6 after formation, and use Design 3
with 10 measurements obtained on Day 1, 2, 3, 4, 5, and 6 (Figure|6A.31p-e). Note that during
this experimental duration only spheroids formed with 10000 cells per spheroid form a necrotic
core with the known parameters, while only spheroids formed with 5000 and 10000 cells per
spheroid form an inhibited region with the known parameters. Therefore, we expect that most
insight will be gained from the experiment formed with spheroids formed with 10000 cells per
spheroid.

Simulating Greenspan’s model with the MLE obtained from each of those data sets (dashed
lines in Figures [6A.3Tf-i) we observe good agreement to the first six days of synthetic data for
each initial spheroid size. However, simulating Greenspan’s model with the MLE obtained from
each of those data sets (dashed lines in Figures[6A.31f-i) and comparing to Greenspan’s model
simulated over 20 days with the known parameters used to generate the synthetic data (solid
lines in Figures |6A.31f-i)) this is not the case. We only observe excellent agreement for the
experiment with spheroids formed with 10000 cells, since this experiment has measurements in
phase (iii). Profile likelihoods for the parameters also show that only the experiment performed
with spheroids formed with 10000 cells accurately captures the known parameters (Figure

6A.31)-n).
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Figure 6A.31: Synthetic data exploring role of initial spheroid size and experimental duration. (a) In
Greenspan’s model a change in R,(0) corresponds to a shift in time. (b)-(e) Synthetic generated for the
first six days after formation for spheroids formed with (b) 1250, (c) 2500, (d) 5000, (e) 10000 cells per
spheroid. (f)-(i) Comparison of Greenspan model simulated with maximum likelihood estimate (dashed
lines) compared to synthetic data for first 6 days compared to Greenspan model simulated with known
parameters used to generate the synthetic data (solid lines). Profile likelihoods for (j) R,(0), (k) s, (I) Re,
(m) ~, (n) Q. Yellow, orange, blue, and purple lines in (j)-(n) represent profile likelihoods from spheroids
formed with 1250, 2500, 5000, and 10000 cells per spheroid, respectively. Black dashed lines in (j)-(n)
show known parameters used to generate the synthetic data.
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6A.5.4 Increasing number of measurements

In biological experiments it is time consuming and expensive to increase the number of mea-
surements obtained. However, by generating synthetic data we can easily simulate additional
measurements. We generate 48 measurements of the outer radius, inhibited radius, and
necrotic radius every half day from Day O to Day 20. We choose 48 measurements since
this corresponds to half of a 96-well plate and is extremely large in comparison to typical ex-
periments. These results show that many measurements of Design 2 may provide good insight

in this extreme scenario but that Design 3 still provides most insight.
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Synthetic data in increasing order of difficulty in experiments to obtain
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Figure 6A.32: Synthetic data shows that more measurements of the necrotic and inhibited radius
provides valuable information. (a)-(c) Synthetic data used in Designs 1, 2 and 3. (d)-(f) Comparison of
Greenspan model simulated with maximum likelihood estimate compared to full synthetic data set for
Designs 1, 2 and 3. Profile likelihoods for (g) s, (h) Re, (i) 7, (i) @- Yellow, orange, blue lines in (e)-(h)
represent profile likelihoods from Designs 1, 2, and 3, with low temporal resolution, respectively. Black
dashed lines in (g)-(j) show known parameters used to generate the synthetic data.
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6A.6 Parameter identifiability analysis for WM983b

The main manuscript focuses on results for the human melanoma WM793b cell line. Here, we
present the corresponding results for the human melanoma WM983b spheroids formed with
2500, 5000, and 10000 cells.

All key observations made in reference to the WM793b cell line hold for the WM983b cell
line. Specifically, in Figures [6A.33] [6A.34] and [6A.35] for spheroids formed with 2500, 5000,
and 10000 cells, respectively, we show that varying the temporal resolution using only Design
1 is insufficient to determine necrotic and inhibited radii. In Figures [6A.36} [6A.37] and [6A.38]
for spheroids formed with 2500, 5000, and 10000 cells, respectively, we show that Design 3

provides most insight. In Figure [6A.39| we show that information gained across experiments
with different initial spheroid sizes is consistent. Minor modifications were applied to the ex-
perimental designs as the WM983b tumour spheroids form after 3 days, which is 1 day earlier
than the WM793b tumour spheroids, and the experiment was terminated after 19 days so the
updated temporal resolutions are for this cell line are chosen as: Resolution A using Days 1,
3, 8, 12, 16; Resolution B using Days 1, 3, 5, 8, 10, 12, 14, 16, 18; Resolution C using Days 0,
1,2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15, 16, 17, 18; where Day 0 corresponds to the time

that we determined as when spheroid formation ends and growth begins.
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6A.6.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii
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Figure 6A.33: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Re, (i) v, (j) @. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
2500 cells per spheroid.
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Figure 6A.34: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Re, (i) v, (j) @. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with

5000 cells per spheroid.
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Figure 6A.35: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Re, (i) v, (j) @. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
10000 cells per spheroid.
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6A.6.2 Cell cycle data are informative

Experimental data in increasing order of difficulty to obtain
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Figure 6A.36: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Re, (i) 7, (j) @. Yellow, orange, blue lines in
(9)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
2500 cells per spheroid.
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Experimental data in increasing order of difficulty to obtain
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Figure 6A.37: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) R., (i) 7, (j) @. Yellow, orange, blue lines in
(9)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
5000 cells per spheroid.
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Experimental data in increasing order of difficulty to obtain

@) Design 1 (b) Design 2 (c) Design 3
400 ' ' N
I | | |
300 ] ‘ i
T I I - Vo |
g 200 ! | |
5 I ! I
g 100
] 1
0
0 5 10 15 20 O 5 10 15 20 O 5 10 15 20
Time [days] Time [days] Time [days]
Maximum likelihood estimate
(d)400 Design 1 (e) Design 2 ()] Design 3

Radius [pm]

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time [days] Time [days] Time [days]

Profile likelihoods

0.0 0.2 0:4 0.6 0.8 1.0 0.0 100 200 300
s [day?] R, [um]
0) I ‘
1.0
B
8 0.5
e
0.0
2 3 4 5 6 0.0
14
Design 1 mmmmm  Design 2 mmmmm  Design 3

Figure 6A.38: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) R., (i) 7, (j) @. Yellow, orange, blue lines in
(9)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
10000 cells per spheroid.
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6A.6.3 Information gained across spheroid sizes is consistent
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Figure 6A.39: Information gained from experiments across different initial tumour spheroid sizes is
mostly consistent. Profile likelihoods for (a) R,, (b) s, (¢) Re, (d) 7, (e) Q. Yellow, orange, and blue lines
in (a)-(e) represent profile likelihoods from tumour spheroids initially with approximately 2500, 5000, and
10000 cells per spheroid, respectively, and the red-dashed line shows the approximate 95% confidence
interval threshold. (f) Comparison of Greenspan model simulated with maximum likelihood estimates
compared to full experimental data sets across initial tumour spheroid size, where error bars show
standard deviation. Results shown for WM983b cell line.
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6A.7 Parameter identifiability analysis for WM164

The main manuscript focuses on results for the human melanoma WM793b cell line. Here,
we present analogous results for the human melanoma WM164 spheroids formed with 1250,
2500, 5000, and 10000 cells per spheroid. These spheroids are more challenging to interpret
as we will now explain.

In experiments WM164 spheroids formed after 3 days. These spheroids were larger in
size than other spheroids considered in this work, with the initial radius of WM164 spheroids
formed with 1250 cells per spheroid larger than and similar size to WM983b and WM793b
spheroids formed with 10000 cells per spheroid, respectively. The WM164 spheroids had rel-
atively poor spherical symmetry [219], grew rapidly and many spheroids lost their structural
integrity nine days after seeding formed with 1250, 2500, and 5000 cells per spheroid, and
seven days after seeding for spheroids formed with 10000 cells spheroid. In addition, confocal
microscopy could not be performed on day 7 after seeding for spheroids formed with 5000
and 10000 cells per spheroid due loss of structural integrity during harvesting. Identification of
the necrotic region using image processing was more challenging, than for other cell lines, as
a well-defined necrotic region did not form prior to the termination of the experiment. There-
fore, necrotic region measurements for these spheroids are more subjective and uncertain.
Spheroid boundaries were less smooth, so settings on the IncuCyte S3 live cell imaging sys-
tem were updated to measure the largest brightfield object area with max eccentricity to 0.75
and sensitivity 20. These outer radius measurements were then manually reviewed to confirm
accuracy.

We perform analysis for WM164 spheroids using Days 1, 2, 3, 4 and 5 after formation,
where measurements could be obtained. This means that we do not include the last day of
outer radius measurements for spheroids formed with 1250, 2500, and 5000 cells per spheroid.
This allows us to compare the final outer radius measurement to Greenspan’s model simulated
with the MLE as a predictive test. However, for spheroids formed with 10000 cells per spheroid
we include all data points so cannot form a predictive test, but this is because we seek to
obtain as much information as possible in the shorter experimental duration. While the ex-
perimental duration for WM164 spheroids is relatively short in comparison to the WM793b
and WM983b experiments, these experiments are still performed for multiple days longer than
previous WM164 spheroid experiments [87].

To perform the analysis we update initial parameter bounds, used for practical parameter
identifiability analysis, for as 200 < R,(0) < 600[um] and 200 < R. < 700 [um]. We up-
date FirstGuess to (Q,7, s, R¢, Ro(0)) = (0.8,0.1,0.5,400, 210) for spheroids formed with 1250
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and 2500 cells per spheroid, and to (Q,~, s, Rc, Ro(0)) = (0.8,0.1, 0.4, 400, 350) for spheroids
formed with 5000 and 10000 cells per spheroid. Due to the reduced experimental duration
for WM164 spheroids, and as we have already demonstrated with two other cell lines and
synthetic data that Design 3 provides most insight, here we compare results obtained from
spheroids with different initial sizes using Design 3.

In Figure [6A.40p, we observe four distinct narrow peaks for R,(0) corresponding to the
four initial spheroid sizes, which is expected. For s, we observe that profile likelihoods overlap
showing information obtained for s is relatively consistent for different initial spheroid sizes
(Figure [6A.40p). Interestingly and importantly, we observe four distinct peaks for R, (Figure
6A.40c). This lack of consistency is different to the other two cell lines considered and strongly
suggests information gained across initial spheroid sizes is not consistent. This is supported
by direct observation of the experimental data where spheroids formed with 2500 cells have
necrotic cores on day 4, whereas similar sized spheroids on day 2 formed with 5000 and 10000
cells per spheroid do not. Profile likelihoods for v are wide for spheroids formed with 5000 and
10000 cells per spheroid, and narrow and overlapping for spheroids formed with 1250 and 2500
cell per spheroid, showing that v requires more necrotic core measurements to be identified
(Figure |6A.40d). Profile likelihoods for @2 suggest that () decreases as the initial spheroid size
increases (Figure [pA.40k). This result for @ is less consistent and in constrast to results from
other cell lines, where the profiles for @ overlapped for all spheroid sizes. Overall, we conclude
that, possibly due to their lack of spherical symmetry, WM164 spheroids are more challenging
to interpret and information gained using spheroids of different sizes is not consistent.

To support these results, we show along the diagonal of Figure [6A.40f the solution of the
mathematical model evaulated at the MLE associated with each initial spheroid size compared
to the experimental measurements. In doing so we demonstrate that we accurately predict
the last outer radius measurement using previous days measurements for spheroids formed
with 1250, 2500, and 5000 cells per spheroid. However, on the off-diagonals of Figure [6.4f,
we compare how the Greenspan model simulated with the MLE from one initial spheroid size
predicts data from different initial spheroid sizes by only changing the initial radius. These off-
diagonal results show that using information from one spheroid size to predict the behaviour
of a different spheroid size is not always accurate. For example, using information gained
from spheroids formed with 10000 cell per spheroid poorly predicts the behaviour of spheroids
formed with 1250 cell per spheroid, as the time evolution of the outer radius is not accurately

predicted at late time and the inhibited and necrotic regions form much earlier than predicted

(top right of Figure )
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Figure 6A.40: Information gained from WM164 experiments across different initial tumour spheroid
sizes is inconsistent. Profile likelihoods for (a) R,(0), (b) s, (¢) R, (d) v, () Q. Yellow, orange, blue,
and purple lines in (a)-(e) represent profile likelihoods from WM164 spheroids formed with 1250, 2500,
5000, 10000 cells per spheroid, respectively, and the red-dashed line shows the approximate 95%
confidence interval threshold. (f) Comparison of Greenspan model simulated with maximum likelihood
estimates compared to full experimental data sets across initial tumour spheroid size, where error bars
show standard deviation.
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7.1 Summary of the research

In this thesis we address two key aims. The first key aim is to develop a mathematical modelling
framework to study epithelial tissue dynamics incorporating key biological processes, such as
cell movement due to mechanical interactions, mechanical relaxation, cell proliferation, cell
death, mechanical cell competition, mechanochemical coupling, and cell detachment at tissue
boundaries due to epithelial-mesenchymal transitions. This framework is applicable to hetero-
geneous populations on free and fixed domains, and where the discrete model is prescribed
based on biological observations and the corresponding continuum-limit model derived. The
second key aim is to use mathematical models to quantitatively compare experimental designs
for tumour spheroid experiments to reveal those design choices that are important and lead to
reliable biological insight. This enables us to provide recommendations for future studies. To
achieve these aims we develop new mathematical models, perform tumour spheroid experi-
ments in the laboratory, and use statistical analysis. These two key aims correspond to Part 1
and Part 2 of this thesis and objectives 1-4, and 5, respectively, of this thesis:

Part 1: Mathematical model development

1. Develop a discrete mathematical model to describe cell movement due to mechanical
interactions in heterogeneous epithelial tissues and derive and compare to the corre-

sponding continuum-limit model,

2. Extend objective 1 to develop a discrete mathematical model that includes cell prolifer-
ation and cell death in order to describe mechanical cell competition in heterogeneous

epithelial tissues and derive and compare to the corresponding continuum model,

3. Extend objectives 2 and 3 to examine the travelling wave behaviour of the free bound-
ary continuum model, incorporating cell movement due to mechanical interactions, cell

proliferation, and cell death,

4. Extend objectives 2, 3, and 4 to develop a discrete mathematical model to describe
the role of mechanical interactions in epithelial-mesenchymal transitions and derive and

compare to the corresponding continuum model,
Part 2: Experimental design and mathematical modelling

5. Perform tumour spheroid experiments in the laboratory and use statistical analysis with
the Greenspan model to identify experimental design choices that are important and lead
to reliable biological insight. Provide recommendations for future studies and demon-

strate how to quantitatively compare data collected across different experimental designs.
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These five objectives are successfully addressed in the five articles presented in Chapters 2-6

of this thesis, which we now summarise.

In Chapter 2, we develop a discrete to continuum modelling framework to study cell move-
ment due to mechanical interactions in heterogeneous epithelial tissues. We provide a novel
derivation that connects the discrete model to the continuum model by increasing the number
of springs per cell, while maintaining the number of cells in the tissue and its fixed total length,
and by considering spatial averages over length scales involving a large enough number of
cells to define continuous densities but small enough to retain spatial heterogeneities. Excel-
lent agreement is observed between solutions from the discrete model and the corresponding
continuum model for slowly-varying-in-space and rapidly-varying-in-space heterogeneity, as
the number of springs per cell increases. By dealing explicitly with heterogeneous cell pop-
ulations this model has many potential applications. We consider two applications. First, we
provide guidance how to infer cellular-level properties by tracking the interface between two
distinct adjacent populations. We suggest that it is easier to determine the relative cell stiff-
nesses than it is to determine the relative resting cell lengths. Second, we use our model to
interpret recent breast cancer detection experiments. Our results show that while a cell’s rest-
ing cell length is not an easily measured experimental quantity it could be an important variable

to consider.

In Chapter 3, we extend the model developed in Chapter 2 to incorporate cell proliferation
and cell death, allowing us to explore mechanical cell competition. After prescribing the dis-
crete model we derive the corresponding continuum model. In deriving the continuum model,
the discrete mechanisms and assumptions that underpin the continuum model are made ex-
plicit by presenting the details of the coarse-graining derivations. This enables us to to provide
insights into when the continuum model is and is not valid. Therefore, under certain conditions
we can recommend the discrete model is more appropriate. Further, we stress the limitations
of developing continuum models by simply adding source and sink terms to an existing model
without considering the underlying discrete model in complex biological systems. By coupling
mechanics with cell proliferation and cell death we explore biological scenarios that could not
be described with previous modelling frameworks. We focus on mechanical cell competition
in heterogeneous epithelial tissues. By choosing mechanical relaxation rates sufficiently fast
relative to proliferation rates we observe good agreement between the average of many iden-
tically prepared stochastic realisations of the discrete model and the corresponding solutions
of the continuum model, even when there are a low number of cells in the tissue. We explore

mechanical cell competition applied to cancer invasion by considering cancer cells adjacent
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to healthy cells which compete for space. Interestingly, when we only allow cancer cells and
healthy cells to differ in their cell stiffnesses, as a result of mechanical coupling, we observe
that the cancer cells have more opportunities to proliferate and are less likely to die than healthy
cells. We can then identify the cancer cells, as a result of the property of lower cell stiffness, as
being the winner cells which invade the full domain. Cell stiffness and cell size may therefore
be important factors to include when interpreting proliferation and death rates in experimental

data.

In Chapter 4, we extend the work presented in Chapters 2-3 to include a free boundary. By
focusing on the continuum model and using numerical simulations, phase plane and perturba-
tion analysis, we find travelling wave solutions with negative, zero, and positive wavespeeds.
Whether the cell population invades or retreats corresponds to whether cells at the carrying
capacity density are in compression or in extension, respectively. Furthermore, unlike classical
reaction-diffusion models, travelling wave solutions for this model have well-defined fronts and
do not correspond to a heteroclinic orbit in the phase plane. We also obtain exact expressions
for the speed of travelling wave solutions together with useful approximations of the shape of

the travelling wave solutions.

In Chapter 5, we extend Chapters 2, 3, and 4 to incorporate chemical diffusion, and to incor-
porate a new free boundary condition describing cells detaching due to chemically-dependent
epithelial-mesenchymal transitions (EMT). The coupling of mechanical interactions between
cells and chemically-dependent EMT gives rise to a mechanochemical model. We focus on
exploring the role of mechanical interactions in epithelial-mesenchymal transitions (EMT). We
add chemically-dependent cell detachment, to represent EMT, into the modelling framework.
This leads to a novel nonlinear free boundary problem where the boundary condition is derived
from cell-level biological processes. This is unlike many other models in mathematical biology
where the physical interpretation of the boundary conditions can be unclear. Both the discrete
and continuum models provide useful information: discrete models show the important role of
stochastic effects while continuum models help classify possible behaviours. Our results show
good agreement between the continuum model and appropriately averaged quantities from
many discrete realisations. Our models suggest that the coupling of mechanical interactions
with EMT is important, can change the probability of long-term extinction significantly, and give
rise to different rates of cell detachment. Using our model we postulate how one could en-
courage a wound to heal faster and how one may prevent cancer cells detaching from primary

cancer tumours and spreading to other locations to form secondary tumours.

In Chapter 6, we transition to Part 2 of this thesis and focus on tumour spheroid experiments
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where many mathematical models, with mechanochemical mechanisms, have been proposed
but very few have been experimentally tested. Tumour spheroid experiments are routinely per-
formed to study cancer progression and cancer treatments. However, experimental designs
are inconsistent, leading to challenges in interpretability and reproducibility. First, we collect
experimental data from tumour spheroid experiments across a range of experimental designs.
Next, we develop an objective theoretical framework, using the seminal Greenspan mathe-
matical model and statistical identifiability analysis, to quantitatively compare these data and
provide recommendations for future experimental studies. We find that most insight is gained
from measuring spheroids internal structure, and that frequency of measurement is less im-
portant. Furthermore, as information from tumour spheroids across varying initial spheroid
sizes appears consistent, provided sufficient measurements at later times (in phase (iii)) are
obtained, we recommend that performing experiments with larger tumour spheroids can be
beneficial to obtain useful information in a shorter experimental duration. This framework can
be applied to other tumour spheroid experiments grown in different conditions or with different
cell types. The insights of this study provide a platform for future studies that develop, test,
and examine cancer treatments with spheroids. In doing this work we also quantitatively test
the seminal Greenspan mathematical model, which has been highly influential in mathematical

biology, for the first time since its publication 50 years ago.

In preparation for Chapter 6, | was trained in a wet-laboratory to perform tumour spheroid
experiments from start to finish including: cell culturing; spheroid formation; spheroid harvest-
ing; spheroid fixing and mounting in preparation for imaging; confocal microscopy; and, image
acquisition, processing, and analysis. Having started this PhD with no laboratory experience,
the ability to perform biological experiments in combination with mathematical modelling and
statistical analysis has been enlightening. For example, simple and fundamental biological
questions were unknown, such as how does the internal structure of spheroid, and spatiotem-
poral heterogeneity with respect to the cell cycle change with time? how does the choice of
the initial number of cells used to construct spheroid experiments influence the outcome of the
experiment? and how do we compare and interpret tumour spheroid results when different
measurements are made at different time points? We address these questions by developing
an objective quantitative framework connecting experimental data, mathematical modelling,

and statistical analysis, in Chapter 6.

Overall, the work in this thesis has explored mechanochemical and experimental models
in mathematical biology. In the first part of this thesis we develop a discrete to continuum

mechanochemical modelling framework for epithelial tissue dynamics incorporating key bio-
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logical features. Using these models we interpret experimental data, provide guidance on
how to infer cellular-level properties, identify that cell stiffness and cell size may be impor-
tant factors when interpreting proliferation and death rates in experimental data, develop a
quantitative framework to test hypotheses on mechanical cell competition, and highlight the
role of mechanical interactions in epithelial-mesenchymal transitions. Without the modelling
framework developed here such interpretations, observations, and recommendations would
be difficult and not clear. Further this modelling framework is a platform for future studies on
epithelial tissue dynamics, as outlined in Section In the second part of the thesis we de-
velop an objective theoretical framework, using the seminal Greenspan mathematical model
and statistical identifiability analysis, to quantitatively compare experimental data that | collect
in the laboratory across a range of experimental designs. In doing so we provide recommen-
dations for future studies, such as measurements of internal spheroid structure provide the
most insight, whereas varying initial spheroid size and temporal measurement frequency is
less important. As tumour spheroid experiments are routinely performed to study cancer pro-
gression and treatment, the insights of this work are widely applicable and lay a foundation for
future work incorporating drug treatments, spheroids grown with different conditions and with

different cell types, and heterogeneous populations, as outlined in Section[7.2}
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7.2 Future work

Both Part 1 and Part 2 of this thesis, studying epithelial tissue dynamics and tumour growth,
respectively, provide a platform for many future studies. We now discuss some potential exten-

sions.

7.2.1 Epithelial tissue dynamics

The theoretical foundations presented in this thesis for building a discrete model and con-
structing the continuum limit of that discrete model can be used to describe many additional

mechanisms in future analyses.

Cell cycle

While some features of the cell cycle and cell ageing are implicit in this work, it would be
of interest to explicitly incorporate the cell cycle and associated cell ageing processes such
as growth in the resting cell length [T47]. Furthermore, experimental results with real-time
cell cycle imaging, using the same FUCCI technology described in Chapter 6, suggest that
cell cycle progression in epithelial tissues is regulated cooperatively by forces between the
dividing cell and its neighbours [234]. However, these observations appear not to have been
incorporated into models of heterogeneous epithelial tissue dynamics. In this thesis we provide

the foundations for such mechanisms to be included and explored.

Intestinal crypts, curved substrates, and tissue engineering

The work presented in this thesis focuses on one-dimensional epithelial tissues on flat sub-
strates. However, this work can be extended to non-flat geometries, for example curved sub-
strates and intestinal crypts [166][T67]. One expects that many results obtained in this thesis
for one-dimensional flat substrates apply to curved substrates. For example, the continuum
model is expected to hold as taking the limit as the number of springs per cell tends to infinity
would correspond to approximating the curved substrate as flat. In contrast, the role of cur-
vature of the substrate may be important in determining when the continuum model agrees
with the discrete model. Extending this work to substrates that evolve in time, for example in
bone [9][94] or tissue engineering [32[35], may also be interesting where the role of mechanics

can be overlooked.
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Higher dimensions

The one-dimensional approach taken in this work has many advantages in its predictive power,
interpretability, and relative computational simplicity in comparison to two- or three-dimensional
models. Furthermore, cell-length-dependent proliferation may be thought of as an approxima-
tion for cell-volume-dependent proliferation which occurs for cells that move in three-dimensional
environments. However, real cells can also spread without changing volume, so it may be
beneficial to explore the role of the cell cycle in this one-dimensional framework [234]. A sig-
nificant extension of this work would be to consider higher dimensions. The discrete model
could be extended by considering a cell-centre or vertex model which introduces questions
regarding cell shape and how neighbours can be identified, along with increased computa-
tional expense [67}[T75,[779]. A corresponding continuum model in higher dimensions is less
clear. The one-dimensional model enforces an ordering of neighbouring cells, which is im-
portant when deriving a continuum model [68][T63]. However, in higher dimensions cells can
change their neighbours which poses significant challenges [68}[163]. The work completed in

this thesis will provide great insights for such studies.

Quantitatively connect to experimental data

Recent experimental studies have explored the role of mechanochemical processes in epithe-
lial tissues [28][98], mechanical waves in epithelial tissues [T98], colliding epithelial tissues [95],
and cell competition [T30]. However, the corresponding mathematical models tend to neglect
cell proliferation and cell death. In this thesis we have developed a mathematical framework
that provides the platform to study these in greater depth. Therefore it would be of great in-
terest to extend this work to such experimental studies. Further, it would be interesting to
experimentally test predictions made in this work. One approach to quantitatively connect this
model to experimental data could be to use statistical analysis, as described in Chapter 6 for

tumour spheroid experiments.
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7.2.2 Tumour growth

In the second part of this thesis we present an objective theoretical framework to quantitatively
compare experimental data from tumour spheroid experiments performed across a range of

experimental designs. This framework is suitable for many extensions.

Spheroids grown with different conditions

Our modelling framework is suitable to be extended to consider spheroids grown with different
cell types and in different conditions. Such experiments could provide valuable insights. For
example, Greenspan’s model [79], which we use to interpret the experimental data, assumes
that spatial gradients of diffusing nutrient and/or waste drive the governing behaviour. There-
fore, performing perturbation experiments, such as varying the external nutrient concentration,
would test key assumptions in the Greenspan model.

In addition, many studies in experimental biology focus on biological pathways from the
molecular scale upwards. Using our framework one could interpret tumour spheroid experi-
ments with and without gene knockdowns, use statistical identifiability analysis to determine
the parameters of the model, and identify if they vary significantly. If parameters are signifi-
cantly different one could suggest the gene that was knocked down plays an important role on
tumour growth and internal structure. This provides a top down interpretation of experimental
results as opposed to the traditional bottom up approach. This could be powerful in future

studies and would be difficult without using the quantitative framework we outline in this thesis.

Heterogeneous populations

Much of the first part of this thesis focuses on developing a model for heterogeneous epithelial
tissues. In the second part of this thesis we use a mathematical model for homogeneous
populations, since the experiments that we perform use tumour spheroids grown from cell lines
so treating the spheroid as a homogeneous population is realistic. However, in vivo tumours
are heterogeneous. Therefore, considering heterogeneous populations both experimentally,
using tumour spheroids generated from multiple cell lines or patient derived organoids, and
mathematically, possibly by extending Greenspans model, may more accurately mimic real
life scenarios and provide even greater insight. This work would directly build upon the work
presented in this thesis and would be difficult without using the quantitative framework we

outline in this thesis.
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7.3 Final remarks

In this thesis we explore mechanochemical and experimental models in mathematical biol-
ogy. We develop new mathematical models for epithelial tissue dynamics, and perform tumour
spheroid experiments in a wet-laboratory to then examine a range of experimental designs
using mathematical modelling and statistical analysis. As a result of the work in this thesis
we reveal that many measurements and processes, often neglected, may be important. We
demonstrate that power of the discrete-to-continuum modelling approach, and provide a plat-
form for many future studies exploring mechanochemical processes. Furthermore, by develop-
ing an objective theoretical framework, using the seminal Greenspan mathematical model and
statistical identifiability analysis, we demonstrate how to quantitatively compare experimental
data across experimental designs and address basic and fundamental biological questions.
We provide recommendations that will benefit and guide routinely performed tumour spheroid
experiments to accelerate the study of cancer progression and treatment. For future studies
in these research areas, we recommend continued cross-disciplinary collaboration using tools

from experimental biology, mathematical modelling, and statistical analysis.
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