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Abstract

Experiments that probe epithelial tissue dynamics, cell competition, and tumour growth are fun-

damental to understand processes in developmental biology, cancer progression and cancer

treatment. However, interpreting complex biological experiments is challenging. To resolve this

challenge we develop and use a range of different types of mathematical models. In the first

part of this thesis, we develop a mathematical framework for describing epithelial tissues that

incorporates cell motion due to mechanical interactions, cell proliferation, cell death, epithelial-

mesenchymal transitions via cell detachment at the tissue boundary, and mechanochemical

coupling, all for heterogeneous cell populations. Our approach is to start with biologically-

motivated discrete models and derive the corresponding continuum models, for both fixed and

free boundary conditions. Applications to experimental studies are proposed and discussed.

In the second part of this thesis, we collect novel experimental data from tumour spheroid ex-

periments that we perform over a range of experimental designs. Importantly, we use real-time

cell cycle imaging to reveal proliferation-inhibited and necrotic regions inside growing tumour

spheroids. We then revisit the seminal Greenspan model describing tumour growth and use

statistical analysis to reveal the experimental design choices that are important and lead to

reliable biological insight. In doing so we connect Greenspan’s model to data for the first time

since its publication in 1972. All key code is freely available on GitHub repositories.

v

https://github.com/ryanmurphy42


vi



Statement of original authorship

The work contained in this thesis has not been previously submitted to meet requirements for

an award at this or any other higher education institution. To the best of my knowledge and

belief, the thesis contains no material previously published or written by another person except

where due reference is made.

Signature:

Date: 3 September 2021.

vii



viii



Acknowledgements

There are many who I would like to acknowledge and thank for their contribution to this work. Firstly, I

would like to thank my supervisor Professor Matthew Simpson for giving me the opportunity to com-

mence this PhD, his patience, thoughtful guidance and support throughout all of this work, providing

opportunities for me to work in a experimental lab, reading of drafts, providing comments, and general

advice. Secondly, I would like to thank Doctor Pascal Buenzli for his supervision, support through-

out this work, reading many drafts, providing comments, and interesting discussions. Thirdly, I would

like to thank Professor Ruth Baker for her long-standing support, reading drafts and providing com-

ments. I would like to thank Professor Rik Thompson and his group for encouraging me join lab group

meetings, gain further insights into experimental biology, providing collaborative opportunities, and his

encouragement. Doctor Honor Hugo for interesting biology discussions and collaboration. I would like

to thank Professor Nikolas Haass for enabling me to work in his experimental laboratory, providing

great insights into biology and melanoma and interesting discussions. I would like to thank Gency Gu-

nasingh for training me to perform experiments in the laboratory, from no experience to being able to

perform experiments independently, and for her encouragement and interesting discussions. I would

like to thank Alex Browning for his support throughout the PhD and help in the lab. Tamara Tambyah

for interesting discussions extending this research. I would like to thank Doctor Liam Morrow for trips

and distractions outside the PhD room and maths discussions and Morgan for rock climbing trips. I

would like to thank Jesse Sharp for interesting discussions. Doctor Eamon Conway for coding and

maths discussions. I would also like to thank those who have been in the PhD room throughout my

degree for the interesting discussions. Doctor Nabil Fadai for interesting mathematical discussions.

John Blake for IncuCyte support. Doctor David Warne for interesting discussions and saving me on

the HPC. Gordon Shaw for first suggesting a life in academic research and setting high expectations.

Finally I would like to thank my family and friends. I know it was a surprise when I walked in one

weekday evening in the cold of winter and said I was moving to the other side of the world. Thank

you for your support. Mum for saying do what makes you happy. Dad for encouraging my interest in

science. Lauren for reminding me that maths + sun = dream. Grandma for asking why maths is useful

and hopefully I have a good answer now. Steve and Freddie for their encouragement. The McManus

and Edmunds family for welcoming me. And lastly for her love, support and general awesomeness my

love Jeorgia. For all I am hugely grateful.

ix



x



List of Publications

1. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2019). A one-dimensional individual-

based mechanical model of cell movement in heterogeneous tissues and its coarse-

grained approximation. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences. 475:20180838. doi:10.1098/rspa.2018.0838. bioRxiv preprint.

[157]

Selected for the cover of July 2019 issue of the journal

2. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020). Mechanical cell competition in

heterogeneous epithelial tissues. Bulletin of Mathematical Biology. 82:130. doi:10.1007/

s11538-020-00807-x. bioRxiv preprint [158]

3. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2021). Travelling waves in a free

boundary mechanobiological model of an epithelial tissue. Applied Mathematics Letters.

111:106636. doi: 10.1016/j.aml.2020.106636. arxiv preprint [159]

4. Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo H, Baker RE, Simpson MJ

(2021). The role of mechanical interactions in EMT. Physical Biology. 18:046001. doi:

10.1088/1478-3975/abf425. bioRxiv preprint [160]

5. Murphy RJ, Browning AP, Gunasingh G, Haass NK, Simpson MJ (2021). Designing and

interpreting 4D tumour spheroid experiments. Under consideration at Nature Communi-

cations. bioRxiv preprint [156]

xi

https://doi.org/10.1098/rspa.2018.0838
https://www.biorxiv.org/content/10.1101/485276v3
https://royalsocietypublishing.org/toc/rspa/2019/475/2227
https://doi.org/10.1007/s11538-020-00807-x
https://doi.org/10.1007/s11538-020-00807-x
https://www.biorxiv.org/content/10.1101/869495v2
https://doi.org/10.1016/j.aml.2020.106636
https://arxiv.org/pdf/2005.13925.pdf
https://doi.org/10.1088/1478-3975/abf425
https://doi.org/10.1088/1478-3975/abf425
https://www.biorxiv.org/content/10.1101/2020.12.09.418434v3
https://doi.org/10.1101/2021.08.18.456910


xii



Contents

Abstract v

Statement of original authorship vii

Acknowledgements ix

List of Publications xi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Aims, objectives and outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Statement of joint authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I Mathematical model development 27

2 Mechanical relaxation in heterogeneous populations 29

2.0 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Derivation of continuum model . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Homogeneous cell population . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Heterogeneous cell population . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.3 Case study: breast cancer detection . . . . . . . . . . . . . . . . . . . . . 49

2.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



2A Supplementary Material for Chapter 2 53

2A.1 Discrete model simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2A.1.1 Discrete equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2A.1.2 Converting cell density into initial positions . . . . . . . . . . . . . . . . . 55

2A.1.3 Assigning spring properties . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2A.1.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2A.2 Continuum model simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2A.2.1 Discretisation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2A.3 Steady state analysis for two tissue model . . . . . . . . . . . . . . . . . . . . . . 59

2A.4 Breast cancer detection case study: model implementation . . . . . . . . . . . . 60

2A.4.1 Choosing the resting spring length to choose the steady state . . . . . . . 60

2A.5 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Mechanical cell competition 67

3.0 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Derivation of continuum model . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 A homogeneous tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Mechanical cell competition . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.3 Importance of the discrete to continuum approach . . . . . . . . . . . . . 92

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3A Supplementary Material for Chapter 3 97

3A.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3A.1.1 Discrete model with m > 1 springs per cell . . . . . . . . . . . . . . . . . 99

3A.1.2 Death at boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3A.1.3 Derivation of proliferation with m > 1 springs per cell . . . . . . . . . . . . 103

3A.1.4 Mechanical relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3A.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3A.2.1 Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3A.2.2 Continuum model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3A.3 Homogeneous population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3A.3.1 Extinction for constant proliferation and death . . . . . . . . . . . . . . . . 119

3A.3.2 Reduced variance with cell-length-dependent mechanisms . . . . . . . . 121

xiv



3A.3.3 Homogeneous population: logistic proliferation and death . . . . . . . . . 123

3A.3.4 Piecewise proliferation: varying mechanical relaxation rate . . . . . . . . 125

3A.4 Mechanical cell competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3A.4.1 Two populations: cell size at mechanical equilibrium . . . . . . . . . . . . 128

3A.4.2 Mechanical cell competition: robustness to initial conditions . . . . . . . . 129

3A.4.3 Mechanical cell competition: logistic combination . . . . . . . . . . . . . . 133

3A.4.4 Varying mechanical relaxation rate . . . . . . . . . . . . . . . . . . . . . . 136

4 Travelling waves 137

4.0 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.3 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4 Travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4A Supplementary Material for Chapter 4 147

S1 Additional Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Mechanical interactions in EMT 153

5.0 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.1 Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.2 Continuum model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4.1 Cell-length-independent proliferation and chemically-independent EMT . 165

5.4.2 Cell-length-dependent proliferation and chemically-independent EMT . . 169

5.4.3 Chemically-dependent EMT with small diffusivity . . . . . . . . . . . . . . 171

5.4.4 Chemically-dependent EMT with higher diffusivity . . . . . . . . . . . . . 172

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5A Supplementary Material for Chapter 5 177

5A.1 Continuum model: Evolution of free boundary equation derivation . . . . . . . . . 179

5A.2 Numerical methods: Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . 180

5A.3 Numerical methods: Continuum model . . . . . . . . . . . . . . . . . . . . . . . . 189

5A.3.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5A.4 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

xv



5A.4.1 Counting the total number of cells that detach . . . . . . . . . . . . . . . . 195

5A.4.2 Cell-length-independent proliferation . . . . . . . . . . . . . . . . . . . . . 197

5A.4.3 Cell-length-dependent proliferation . . . . . . . . . . . . . . . . . . . . . . 201

5A.4.4 Differences between the cell-based and continuum models: low N(t) . . . 203

5A.4.5 Chemically-dependent EMT: cell-length-independent proliferation . . . . . 205

5A.4.6 Sensitivity to φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5A.4.7 Chemically-dependent EMT: linear proliferation . . . . . . . . . . . . . . . 211

5A.5 Diffusive equilibrium at all times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

II Experimental design and mathematical modelling 215

6 Designing and interpreting 4D tumour spheroid experiments 217

6.0 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.3.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.3.2 Cell cycle data are informative . . . . . . . . . . . . . . . . . . . . . . . . 229

6.3.3 Information gained using spheroids of different sizes is consistent . . . . 232

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.5.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.5.2 Practical parameter identifiability analysis . . . . . . . . . . . . . . . . . . 238

6.5.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6A Supplementary Material for Chapter 6 243

6A.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6A.1.1 Nutrient only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6A.1.2 Nutrient and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6A.2 Profile likelihood further details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6A.2.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6A.2.2 Parameter bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6A.2.3 Pooled sample variances . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6A.3 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

6A.3.1 Outer radius experimental measurements and images . . . . . . . . . . . 261

6A.3.2 Confocal microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

xvi



6A.3.3 Confocal microscopy supplementary experimental images . . . . . . . . . 270

6A.4 WM793b additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

6A.4.1 Results in tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

6A.4.2 Measurement times and experimental duration . . . . . . . . . . . . . . . 281

6A.4.3 Profile likelihoods for Ro(0) . . . . . . . . . . . . . . . . . . . . . . . . . . 286

6A.4.4 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

6A.4.5 Cell cycle data are informative . . . . . . . . . . . . . . . . . . . . . . . . 291

6A.5 Synthetic data: WM793b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

6A.5.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

6A.5.2 Cell cycle data are informative . . . . . . . . . . . . . . . . . . . . . . . . 298

6A.5.3 Role of initial spheroid size and experiment duration . . . . . . . . . . . . 300

6A.5.4 Increasing number of measurements . . . . . . . . . . . . . . . . . . . . . 302

6A.6 Parameter identifiability analysis for WM983b . . . . . . . . . . . . . . . . . . . . 304

6A.6.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

6A.6.2 Cell cycle data are informative . . . . . . . . . . . . . . . . . . . . . . . . 309

6A.6.3 Information gained across spheroid sizes is consistent . . . . . . . . . . . 312

6A.7 Parameter identifiability analysis for WM164 . . . . . . . . . . . . . . . . . . . . . 313

7 Conclusion 317

7.1 Summary of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

7.2.1 Epithelial tissue dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

7.2.2 Tumour growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Bibliography 327

xvii



xviii



Chapter 1

Introduction

1



CHAPTER 1. INTRODUCTION 2

1.1 Overview

Mechanochemical processes, whereby mechanical and chemical processes are coupled, are

of great interest in experimental biology with applications to epithelial tissue dynamics and

cancer tumour growth [28, 79, 91, 98, 171, 228]. Improved understanding of these fundamen-

tal biological processes in development and disease will help combat diseases such as can-

cer [91]. Epithelial tissues are widespread throughout the body and cover all body surfaces,

line body cavities and hollow organs [107, 171] (Figure 1.1a-c), and experiments highlight the

importance of mechanochemical processes in morphogenesis, homeostasis and maintaining

tissue function [28, 98, 171]. Meanwhile tumour spheroid experiments, performed since the

1970s, are routinely used to understand cancer progression and to test and develop cancer

treatments [46, 71, 99, 119, 150, 169, 197, 215, 217, 245] (Figure 1.1d-f). However, interpreting

experimental data from these studies is challenging without a suitable framework.

Tumour spheroid experiments

Epithelial tissue dynamics
(a) (b)

(c)

(d)

time

Phase (i) - 2D slice + FUCCI Phase (ii) - 2D slice + FUCCI(e) (f) Phase (iii) - 2D slice + FUCCI

Figure 1.1: Experimental images from epithelial tissue and tumour spheroid experiments. (a) Cell
migration and tracking in an epithelial monolayer experiment wounded by scratching (Figure 4 from [171]
reproduced with permission). (b) Epithelial cell migration and invasion in an in vitro experiment (Figure 1
from [198] reproduced with permission). (c) Mouse uterine endometrial epithelium (Figure 1 from [107]
reproduced with permission). (d)-(f) Tumour spheroid growth experiments (Figure 1 from Chapter 6).



CHAPTER 1. INTRODUCTION 3

Mathematical modelling provides a powerful framework to interpret experimental data and

to pose, form, and test hypotheses. Thereby, reducing experimental effort, both in time and ex-

pense. In the following we focus first on building a mechanochemical model for epithelial tissue

dynamics. Second, we explore mathematical models for cancer tumour spheroid growth, dis-

cuss current tumour spheroid experimental protocols, and how statistical analysis in combina-

tion with mathematical modelling may provide great insights. By studying both epithelial tissue

dynamics and tumour spheroid experiments, we develop understanding of mechanochemi-

cal and experimental models in mathematical biology from two approaches: (i) those where

model development is required to catch-up to the latest experiments; and (ii) those where

many mathematical models have already been posed to study experiments but few have been

experimentally tested. Specifically, case (i) refers primarily to epithelial tissue dynamics and

case (ii) to tumour spheroid experiments.

To study epithelial tissues at the cell and tissue scale two mathematical modelling ap-

proaches naturally arise: (i) a discrete model, often referred to as an individual based model,

reviewed in [175,179] and including cellular automata models, cellular Potts models, cell-centre

models [179], vertex models, subcellular-element models [196], and tensegrity models [104];

(ii) a continuum model, for example derived using the theory of continuum mechanics [78]. Both

modelling approaches are widely used and have their own advantages and disadvantages.

Discrete models explicitly describe cellular-level interactions but often lack macroscopic intu-

ition. Continuum models on the other hand often provide no cellular-level information [17] but

can be more adept at including concepts of macroscopic stiffness [45,181] and, for large num-

bers of cells, as in epithelial tissues, tend to be less computationally expensive. Hybrid inter-

mediate models also exist which consider the multi-scale nature of the problem [13,176,236].

One approach to get the best of both worlds is to develop a mathematical modelling framework

that allows a modeller to switch between both modelling approaches with an in-depth under-

standing of when this is appropriate and advantageous. Current approaches to implement

such a framework use a variety of coarse-graining techniques and assumptions, including the

use of slowly varying and periodic assumptions on the heterogeneity in the model [68, 174],

correlation functions [147, 153], and interaction forces from potentials [27]. For epithelial tis-

sue dynamics, key features that should be included in a mathematical modelling framework

are cell-cell interaction forces, cell proliferation, cell death, fixed and free boundaries, and

mechanochemical processes [28,198].

At the tissue scale a natural starting point is to use a reaction-diffusion continuum model.

Reaction-diffusion models are widely used in mathematical biology for a wide range of ap-
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plications [30, 56, 161, 162]. In one spatial dimension, these models typically take the form

of

∂q(x, t)

∂t
=

∂

∂x

(
D (q (x, t))

∂q(x, t)

∂x

)
+R (q (x, t)) , (1.1.1)

where q(x, t) is a density, for example of cells; x represents spatial position; t represents

time; the diffusivity is commonly assumed to be a constant, D(q(x, t)) = D, which describes

a population of cells each of which moves randomly [140, 141]; and, the reaction term can

take many forms such as a logistic growth term. Many analytical and computational tools

have been developed to study reaction-diffusion type problems. However, it is not immedi-

ately clear whether reaction-diffusion models can or should be used to study cells that, rather

than moving randomly, move due to mechanical interactions. Two key approaches have been

used to demonstrate that cell movement driven by mechanical interactions can be studied with

reaction-diffusion equations. The first approach, and the approach taken in this thesis, is very

fruitful, namely prescribing a discrete cell-based model, carefully deriving the corresponding

the continuum model, and comparing the prescribed discrete model and the derived contin-

uum model [164, 165]. The second approach, that which is commonly applied in continuum

mechanics, is to consider conservation of mass and momentum to determine the continuum

model and proceed only with the continuum model [78]. We show that this second approach

may lead to incorrect results.

At the cell scale, key starting points for this thesis are the studies by Murray et al. [164,165].

By considering an epithelial tissue comprising of a homogeneous population of cells, they first

describe a discrete model consisting of a chain of cells (Figure 1.2 where every cell has the

same cellular properties). Each cell is thought to act like a mechanical spring with cell stiffness,

k > 0, and resting cell length, a > 0. The motion of cells is assumed to occur in an overdamped

and viscous environment with mobility coefficient, η > 0. Then the time-evolution of the position

of a cell boundary, xi(t), is given by (Figure 1.2a),

η
dxi(t)

dt
= Fi+1,i − Fi,i−1, i = 1, 2, . . . , N. (1.1.2)

where Fi+1,i represents the cell-cell interaction force experienced on the ith cell boundary due

to cell i + 1 (Figure 1.2). Equations (1.1.2) form a system of deterministic ordinary differ-

ential equations that are solved to obtain the full time-evolution for the positions of all cells

within the tissue. The corresponding continuum model takes the form of a reaction-diffusion

equation (1.1.1), with D(q(x, t)) determined by the cell-cell interaction force [165], for example
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(e) Free boundary epithelial tissue dynamics with cell detachment due to EMT

(f) Impact of proliferation on size and chemical concentration

L(t)

t t + dt

a a 2a

L(t + dt)x = 0 x = 0

x = 0 x = L

(a) Epithelial tissue dynamics for a heterogeneous cell population

ai

xi

ki

xi+1

(c) Cell proliferation (d) Cell death

x = 0 x = Lx = s(t)

(b) Competing adjacent epithelial tissues

k1 k2

a1 a2

t

t + dt

Chemical concentration: 

Figure 1.2: Mathematical modelling of epithelial tissue dynamics (adapted from schematics from Chap-
ters 2, 3, 4, and 5). Cell-cell interactions are incorporated by considering each cell to act like a mechan-
ical spring. Cell heterogeneity is shown in blue in (a) for a slowly-varying-in-space heterogeneous
cell population, and in (b) for rapidly-varying-in-space heterogeneous cell population. (c) A new cell is
formed during cell proliferation. (d) A cell is lost during cell death. (e) During epithelial-mesenchymal
transitions cells undergo a phenotypic and morphological changes to detach, for example at the free
boundary of the tissue where chemical concentration may be highest. (f) Impact of cell proliferation on
cell size and chemical concentration.
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D (q(x, t)) = k/(ηq(x, t)2) for Hooke’s linear force law, and with no reaction term when cell

proliferation is neglected. Interestingly, unlike many models studied in mathematical biology,

the diffusion term is nonlinear and is inversely proportional to the square of the cell density,

q(x, t). Murray et al.’s work has also been adapted to intestinal crypts [166,167].

Murray et al.’s [164, 165] model is applicable to homogeneous cell populations. While the

discrete model can be readily extended to heterogeneous cell populations (Figure 1.2a,b), it

is not clear what the corresponding continuum model is nor when it is valid. Furthermore, it

is not clear if the techniques used to derive the continuum model for homogeneous popula-

tions can be applied when considering a heterogeneous population of cells. Other discrete to

continuum models have also been studied, for example with energy considerations [68], corre-

lation functions [147, 153], and interaction forces from potentials [27]. However, these models

do not include mechanical stiffness, which is important in cancer progression [193], cancer

invasion and metastasis [170], cancer detection [10, 103, 182, 221], wound healing [61], and

morphogenesis [66].

Many mathematical modelling studies assume that epithelial tissues comprise of homo-

geneous populations [164, 165]. However, in reality epithelial tissues are naturally heteroge-

neous [182]. This heterogeneity can arise at multiple scales [38, 248]. At the cellular scale

fundamental properties that can vary between cells include mechanical properties, such as

cell stiffness, equilibrium cell size, proliferation rate and death rate. Furthermore, heterogene-

ity in mechanical stiffness is an important biomarker in cancer detection [10,103,182,221]. This

cell-to-cell heterogeneity can be naturally incorporated into discrete models. However, Murray

et al.’s [164,165] discrete and continuum model has not been extended to heterogeneous pop-

ulations. Fozard et al. [68] have introduced heterogeneity into their one-dimensional model,

derived using energy considerations, but invoke slowly-varying-in-space and periodic assump-

tions. Heterogeneity has also been incorporated in two-dimensional and three-dimensional

discrete models for epithelial monolayers, with prominent classes of models that explicitly in-

corporate cell-cell forces including cell-centre and vertex models [67, 175, 179]. However the

corresponding continuum models are unclear with limited progress even for homogeneous

populations [174]. Any insights gained at lower dimensions will be valuable to develop under-

standing of higher dimensional models. Developing a discrete to continuum modelling frame-

work that incorporates slowly-vary-in-space and rapidly-vary-in-space heterogeneity for low

and high cell numbers is of interest (Figure 1.2a,b), with applications to epithelial monolayers,

intestinal crypts, and tissue engineering [43]. Furthermore, introducing heterogeneity into an

epithelial tissue model would open up a new realm of possibilities.
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One such example where including heterogeneous populations is important is in cell com-

petition [130]. Cell competition is the mechanism responsible for the elimination of viable sub-

optimal loser cells by optimal winner cells [29]. Cell competition can act as a quality control

mechanism in tissue development or as a defence against precancerous cells, and harnessing

cell competition has been suggested as a possible approach to enhance both cell-based can-

cer and regenerative therapies [184]. Many experimental studies have identified different genes

and signalling pathways as potential mechanisms underlying cell competition [29]. Further-

more, early studies of cell competition suggested that cell competition and long-term population

outcomes arise due to differences in intrinsic cell proliferation and cell death rates [210, 211].

Many mathematical models study the time-evolution of competing populations using ordinary

differential equations [56, 161, 162, 172], but these models neglect spatial effects. Partial dif-

ferential equation models incorporate spatiotemporal dynamics, and typically take the form of

a system of reaction-diffusion equations (1.1.1) [56,161,162]. In these frameworks, the role of

mechanical interactions and mechanical properties is often overlooked.

Recent experiments have demonstrated that mechanical interactions can play an important

role in cell competition, leading research of mechanical cell competition [29, 125, 129, 130,

241]. In the emerging research area of mechanical cell competition, winner cells compress

neighbouring cells promoting tissue crowding and regions of higher density, which leads to

cell death (Figure 1.2d) [29,129,241], while cell proliferation occurs in regions of lower density

(Figure 1.2c) [82]. However, a theoretical framework to study these processes which connects

cell and tissue scales is unavailable at present [130]. Such a framework would be beneficial

to form and test hypotheses on how cellular mechanisms and competition mechanisms impact

the long-term survival of competing populations [130].

One source of experimental data for epithelial tissue dynamics is in vitro experiments, per-

haps from wound healing scratch and barrier removal assays (Figure 1.1a) [95,171,183]. Such

wound healing assay experiments have previously been studied with travelling wave solutions

of the Fisher-KPP reaction-diffusion model, described by equation (1.1.1) with constant diffu-

sivity and logistic type reaction term [140,141]. Travelling wave solutions can provide analytical

expressions for the shape of wavefronts and the wavespeed, the speed at which the front of

the wave invades into free space. However, these solutions may not have a well-defined front,

which means that it is not clear where the front of the wave is defined. For example, solutions

of the Fisher-KPP equation on −∞ < x < ∞ do not have compact support because the cell

density, q(x, t), is always positive, with q(x, t)→ 0 as x→∞ [58,140,141,161].

A well-defined front is observed in experiments. Therefore other studies have developed
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models to capture this feature, for example by reformulating the Porous-Fisher equation to

include a moving boundary [194, 195, 200, 247] or by adapting the Fisher-KPP equation to

a Fisher-Stefan model so that q(x, t) = 0 at x = L(t), where L(t) is the domain length

[57, 58, 62, 63]. However, a physical meaning for the Stefan condition is not clear and in gen-

eral travelling wave solutions for reaction-diffusion models often overlook the important role of

mechanics [198]. Since nonlinear reaction-diffusion equations describing homogeneous pop-

ulations often support travelling wave solutions [161,201], a natural question to ask is whether

the free boundary version of Murray et al.’s work [164,165], proposed by Baker et al. [19], has

a travelling wave solution. We might anticipate that a travelling wave solution does indeed exist

and that a well-defined front may naturally arise from clearly motivated biological assumptions.

Furthermore, it would be interesting to see how mechanical properties of cells influence the

wavespeed [198].

Thus far we have primarily discussed the role of mechanical interactions in epithelial tissue

dynamics. However, chemical processes are at least equally as important and often strongly

coupled with mechanical processes [28, 91, 98, 171, 228]. Recent progress has been fast.

Just under a decade ago experiments showed mechanical waves in freely expanding epithelial

tissue [198]. They interpreted these results using a discrete model similar to that of Murray

et al. [164, 165]. Last year, similar experiments were performed with improved technology

and direct connections were made between the mechanical waves and ERK chemical waves,

strongly suggesting a mechanochemical feedback loop [28, 98]. The latest results were mod-

elled using a modified version of Murray et al.s continuum model. However, these models tend

to neglect cell proliferation and cell death, which may play an important role in experimental

results and longer term studies [28, 198]. Furthermore, they do not they do not utilise the

advantages of both discrete and continuum modelling approaches.

Mechanochemical coupling has also recently been explored mathematically in relation to

epithelial tissue dynamics with intracellular signalling incorporated into each cell of Murray et

al’s work [164,165]. This work by Tambyah et al. [225], motivated by the work in this thesis and

the work of Zmurchok et al. [256], nicely demonstrates how perturbations to mechanochemical

coupling at the cellular scale give rise to different tissue level behaviour. This is shown for Rac-

Rho pathway and for activator-inhibitor systems giving rise to Turing-like patterns in moving

boundary problems [48, 49, 225]. Given that mechanochemical processes have been shown

to be important for behaviour within the tissue, we ask what the role of mechanochemical

processes is at the leading edge of the tissue which is largely unexplored.

Cells in epithelial tissues are characterised as moving collectively and being closely ad-
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herent. These epithelial cells can undergo phenotypic and morphological changes to partially

or fully transition to mesenchymal cells, typically characterised as cells that are less adherent

to other cells and tend to move as individuals, in a process called epithelial-mesenchymal

transitions (EMT) [110, 249]. Epithelial-mesenchymal transitions are key events in embry-

onic development; wound healing; and cancer development [124, 229, 249]. These transi-

tions have been studied extensively for decades experimentally and more recently with math-

ematical models from the perspective of intracellular chemical processes and regulatory net-

works [41,41,110,111,137,226,229]. However, even though experimental evidence exists that

demonstrates that physical signals, such as mechanical stress [77], can play a role in EMT,

the role of mechanics in EMT is largely unexplored. Notable exceptions being discrete mod-

els that explore how cell adhesion is influenced by intracellular chemical processes leading to

predictions of temporal cell-cell detachments [12, 187]. However, there is no current discrete-

to-continuum mathematical modelling framework to explore such processes and the long-term

behaviour of epithelial tissues [110]. In Figure 1.2e-f we present schematics for a free bound-

ary model of epithelial tissue dynamics where diffusion of an epithelial-mesenchymal transition

inducing chemical results in cell detachment at the tissue boundary.

Many of the key features discussed for epithelial monolayers also occur in three-dimensional

cancer tumours, such as mechanical interactions, cell proliferation, cell death, mechanochem-

ical processes, heterogeniety, and epithelial-mesenchymal transitions [46,71,79, 99,119,150,

169,197,215,217,245]. However, in comparison to two-dimensional epithelial monolayers, tu-

mours are more appropriately studied experimentally and mathematically in three-dimensions,

since behaviour within the tumour is understood to be strongly spatially-dependent [79]. Un-

like mechanochemical processes in epithelial tissues, many mathematical models have been

developed to study avascular tumour growth [7,16,17,36,40,65,79,85,105,106,108,117,122,

135, 148, 149, 152, 242, 243]. However, even though many mathematical models have been

developed few have been experimentally validated [16]. It is therefore of interest to connect

such mathematical models to experimental data.

Connecting mathematical models to experimental data is also beneficial to experimental

researchers. A recent powerful experimental tool is fluorescent ubiquitination-based cell cy-

cle indicator (FUCCI) technology [87, 192, 251]. FUCCI technology enables real-time imaging

of the cell cycle. These tools have been valuable in combination with mathematical mod-

elling [39,237,238], for example in replicating normally-hidden inherent synchronisation in cell

proliferation [238]. These two-dimensional in vitro experimental studies have been connected

to mathematical modelling using different statistical methods, such as approximate Bayesian
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computation [39] and statistical identifiability analysis [204]. Statistical identifiability analysis

is also been useful to explore heterogeneous media [205], model misspecification [206], and

tissue growth in 3D printed scaffolds [32].

Tumour spheroid experiments have been routinely used to study avascular tumour growth

and to test and develop drug treatments since the 1970s [46, 71, 79, 99, 119, 150, 169, 197,

215, 217, 245]. However, experimental design is inconsistent and there is no consensus on

the optimal experimental design [46, 71, 99, 119, 150, 169, 197, 215, 217, 245]. These biologi-

cal experiments are inconsistent in: (i) the times when measurements are taken; (ii) the du-

ration of experiments, which from a few days to over a month [8, 18, 83, 121, 168, 177]; (iii)

the initial number of cells used to form spheroids [8, 18, 54, 83, 88, 121, 168, 177], for exam-

ple 300 to 20,000 cells [54, 168]; and (iv) the type of experimental measurements that are

taken [8, 18, 54, 83, 88, 121, 168, 177]. Furthermore, it is challenging to interpret and compare

experimental data and results across experimental designs. Therefore, it is of interest to in-

vestigate and potentially identify which experimental designs lead to reliable biological insight.

Mathematical modelling and statistical analysis could provide an insightful approach to quan-

titatively compare experimental designs and in doing so test mathematical models of tumour

growth with experimental data.

Given that there are many mathematical models of tumour growth with few experimentally

validated [16], it seems most sensible at this time to use an existing mathematical model rather

than develop a new mathematical model. Furthermore, at this stage choosing a mathemati-

cal model with few parameters, that have a relatively straightforward biological interpretation,

should gain mechanistic insight and avoid overfitting to experimental data. Therefore, we now

discuss the seminal Greenspan model [79]. The Greenspan model was published in 1972

and has been highly influential since it was the first mathematical model to describe the three

phases of avascular tumour spheroid growth: (i) all cells throughout the spheroid proliferate

(Figure 1.3a), (ii) cells close to the periphery proliferate while cells at the centre of the spheroid

are arrested an unable to proliferate (Figure 1.3b); (iii) cells close to periphery proliferate while

an intermediate region of cells are arrested and a central region is composed of dead cells in

various stages of dissolution (Figure 1.3c). These mechanisms are understood to be the result

of nutrient availability [79] (Figure 1.3f-h).

Greenspan’s mathematical model is a mechanochemical model describing avascular tu-

mour growth, and distinct to the mechanochemical models previously discussed for epithelial

tissue dynamics. In Greenspan’s model mechanical interactions are assumed to maintain the

tumour as a compact solid mass, rather than being explored explicitly as in the models of Mur-
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Figure 1.3: Avascular tumour spheroid growth and the Greenspan mathematical model (adapted from
Figure 1 of Chapter 6). Tumour spheroids experience three phases of growth. (a)-(c) Confocal mi-
croscopy reveals different phases of tumour growth, including (a)-(b) 2D equatorial plane images of
WM793b human melanoma tumour spheroids on days 7, and 14 after seeding, and (c) 3D view of half
of a WM793b human melanoma tumour spheroid on day 21 after seeding. Confocal microscopy of flu-
orescent ubiquitination-based cell cycle indicator (FUCCI) transduced cells allow visualisation of each
cells stage in the cell cycle. (d) Cell cycle schematic coloured with respect to FUCCI signal. (e) To
perform the tumour spheroid experiments to collect the experimental data for this chapter I was trained,
starting from no experience in a laboratory prior to this PhD. I performed tumour spheroid experiments
from start to finish. Image shows me in the laboratory during the spheroid formation stage of an exper-
iment (further details are shown in Section 6.5.3 Experimental methods and the experimental protocol
is detailed in [218]). (f) Simulation of Greenspan’s mathematical model with Design 3, from Chapter
6, measuring the the outer (green), necrotic (black), and inhibited (magenta) radius. (g) Schematic for
Greenspan mathematical model. Nutrient diffuses within the tumour spheroid and is consumed by living
cells. (h) Snapshot of nutrient concentration, c(r, t) for 0 < r < Ro(t), for a tumour spheroid in phase
(iii) and where Ro(t) is the tumours outer radius. External nutrient concentration is c∞. Inhibited radius,
Ri(t), and necrotic radius, Rn(t), are defined as the radius where the nutrient concentration first reaches
thresholds ci and cn, respectively.



CHAPTER 1. INTRODUCTION 12

ray et al [164, 165] and those we will consider in Chapters 2-5. Furthermore, as described

previously and in Figure 1.3, chemical diffusion is important in Greenspan’s model to deter-

mine the time-evolution of the tumour internal structure, whereas in Chapter 5 we will explore

chemical diffusion in relation to epithelial-mesenchymal transitions. Greenspan’s model, due

to a spherical symmetry assumption, describes the evolution of the tumour size with equa-

tions with one-spatial dimension, namely the tumour radius. Note that models of Murray et

al. [164,165] and those we will consider in Chapters 2-5 also have one spatial dimension. It is

of interest to experimentally test Greenspan’s seminal publication for the first time and explore

if we can use this model to improve tumour spheroid experimental protocols.

To experimentally test Greenspan’s seminal publication for the first time and explore if we

can use this model to improve tumour spheroid experimental protocols, we require experimen-

tal data. I collect this experimental data in the wet-laboratory (Figure 1.3e). I started this PhD

with no laboratory experience and was trained to perform experiments in preparation for the fi-

nal results chapter of this thesis. Then for the final results chapter of this thesis I perform tumour

spheroid experiments from start to finish including: cell culturing; spheroid formation; spheroid

harvesting; spheroid fixing and mounting in preparation for imaging; confocal microscopy; and,

image acquisition, processing, and analysis. By designing and performing these experiments

myself I was able to collect the experimental data to interpret with mathematical modelling

and statistical analysis. Furthermore, the opportunity to perform wet-laboratory experiments

provided a wider appreciation of the questions explored in this thesis and for future work.
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1.2 Research questions

The work presented in this thesis is a combination of mathematical model development, new

experimental data, and statistical analysis. Following the discussion in the overview (Section

1.1), we address the the following five questions:

Part 1: Mathematical model development

1. Can we extend existing mathematical models of cell movement due to mechanical inter-

actions in homogeneous epithelial tissues to heterogeneous cell populations?

2. Can we extend the model for cell movement due to mechanical interactions in heteroge-

neous epithelial tissues to incorporate cell proliferation and cell death, and what is impact

of the mechanical cell competition?

3. Do travelling wave solutions exist for mathematical models of free boundary epithelial

tissue dynamics and if so what are their properties?

4. What is the role of mechanical interactions on epithelial-mesenchymal transitions?

Part 2: Experimental design and mathematical modelling

5. Can we connect Greenspan’s mathematical model for avascular tumour spheroid growth

to experimental data, and in doing so can we improve the experimental design of fu-

ture experiments and demonstrate how to quantitatively compare data collected across

different experimental designs?
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1.3 Aims, objectives and outcomes

This thesis has two parts corresponding to two key aims. The first key aim is to develop a math-

ematical modelling framework to study epithelial tissue dynamics incorporating key biological

processes, such as cell movement due to mechanical interactions, mechanical relaxation, cell

proliferation, cell death, mechanical cell competition, mechanochemical coupling, and cell de-

tachment at tissue boundaries due to epithelial-mesenchymal transitions. This framework will

be applicable to heterogeneous populations on free and fixed domains, and where the discrete

model will be prescribed based on biological observations and the corresponding continuum-

limit model derived. The second key aim is to use mathematical models to quantitatively com-

pare experimental designs for tumour spheroid experiments to reveal those design choices that

are important and lead to reliable biological insight. To achieve these aims it is required that

we develop new mathematical models, perform tumour spheroid experiments, and use statis-

tical analysis. This thesis addresses the following five objectives that have a direct one-to-one

correspondence with the five research questions:

Part 1: Mathematical model development

1. Develop a discrete mathematical model to describe cell movement due to mechanical

interactions in heterogeneous epithelial tissues and derive and compare to the corre-

sponding continuum-limit model,

2. Extend objective 1 to develop a discrete mathematical model that includes cell prolifer-

ation and cell death in order to describe mechanical cell competition in heterogeneous

epithelial tissues and derive and compare to the corresponding continuum model,

3. Extend objectives 2 and 3 to examine the travelling wave behaviour of the free bound-

ary continuum model, incorporating cell movement due to mechanical interactions, cell

proliferation, and cell death,

4. Extend objectives 2, 3, and 4 to develop a discrete mathematical model to describe

the role of mechanical interactions in epithelial-mesenchymal transitions and derive and

compare to the corresponding continuum model,

Part 2: Experimental design and mathematical modelling

5. Perform tumour spheroid experiments in the laboratory and use statistical analysis with

the Greenspan model to identify experimental design choices that are important and lead

to reliable biological insight. Provide recommendations for future studies and demon-

strate how to quantitatively compare data collected across different experimental designs.
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This thesis is by publication, consisting of four published articles and one manuscript cur-

rently under consideration. The PhD candidate contributed significantly to all five manuscripts

as recognised by first authorship of all five manuscripts. The work presented in this thesis fulfils

the requirements for the award of a thesis by published papers at the Queensland University

of Technology. This thesis incorporates the publications listed, with abstracts, on the next five

pages.

1. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2019). A one-dimensional individual-

based mechanical model of cell movement in heterogeneous tissues and its coarse-

grained approximation. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences. 475:20180838. doi:10.1098/rspa.2018.0838 biorxiv preprint

Abstract

Mechanical heterogeneity in biological tissues, in particular stiffness, can be used to dis-

tinguish between healthy and diseased states. However, it is often difficult to explore

relationships between cellular-level properties and tissue-level outcomes when biolog-

ical experiments are performed at a single scale only. To overcome this difficulty we

develop a multi-scale mathematical model which provides a clear framework to explore

these connections across biological scales. Starting with an individual-based mechani-

cal model of cell movement, we subsequently derive a novel coarse-grained system of

partial differential equations governing the evolution of the cell density due to heteroge-

neous cellular properties. We demonstrate that solutions of the individual-based model

converge to numerical solutions of the coarse-grained model, for both slowly-varying-in-

space and rapidly-varying-in-space cellular properties. We discuss applications of the

model, such as determining relative cellular-level properties and an interpretation of data

from a breast cancer detection experiment.

https://doi.org/10.1098/rspa.2018.0838
https://www.biorxiv.org/content/10.1101/485276v3
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2. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020). Mechanical cell competition in

heterogeneous epithelial tissues. Bulletin of Mathematical Biology. 82:130. doi:10.1007/

s11538-020-00807-x biorxiv preprint

Abstract

Mechanical cell competition is important during tissue development, cancer invasion,

and tissue ageing. Heterogeneity plays a key role in practical applications since cancer

cells can have different cell stiffness and different proliferation rates than normal cells.

To study this phenomenon, we propose a one-dimensional mechanical model of het-

erogeneous epithelial tissue dynamics that includes cell-length-dependent proliferation

and death mechanisms. Proliferation and death are incorporated into the discrete model

stochastically and arise as source/sink terms in the corresponding continuum model that

we derive. Using the new discrete model and continuum description, we explore several

applications including the evolution of homogeneous tissues experiencing proliferation

and death, and competition in a heterogeneous setting with a cancerous tissue compet-

ing for space with an adjacent normal tissue. This framework allows us to postulate new

mechanisms that explain the ability of cancer cells to outcompete healthy cells through

mechanical differences rather than an intrinsic proliferative advantage. We advise when

the continuum model is beneficial and demonstrate why naively adding source/sink terms

to a continuum model without considering the underlying discrete model may lead to in-

correct results.

https://doi.org/10.1007/s11538-020-00807-x
https://doi.org/10.1007/s11538-020-00807-x
https://www.biorxiv.org/content/10.1101/869495v2
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3. Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2021). Travelling waves in a free

boundary mechanobiological model of an epithelial tissue. Applied Mathematics Letters.

111: 106636. doi: 10.1016/j.aml.2020.106636 arxiv preprint

Abstract

We consider a free boundary model of epithelial cell migration with logistic growth and

nonlinear diffusion induced by mechanical interactions. Using numerical simulations,

phase plane and perturbation analysis, we find and analyse travelling wave solutions

with negative, zero, and positive wavespeeds. Unlike classical travelling wave solutions

of reaction-diffusion equations, the travelling wave solutions that we explore have a well-

defined front and are not associated with a heteroclinic orbit in the phase plane. We

find leading order expressions for both the wavespeed and the density at the free bound-

ary. Interestingly, whether the travelling wave solution invades or retreats depends only

on whether the carrying capacity density corresponds to cells being in compression or

extension.

https://doi.org/10.1016/j.aml.2020.106636
https://arxiv.org/pdf/2005.13925.pdf
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4. Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo H, Baker RE, Simpson

MJ (2021). The role of mechanical interactions in epithelial mesenchymal transitions.

Physical Biology. 18:046001. doi:10.1088/1478-3975/abf425 biorxiv preprint

Abstract

The detachment of cells from the boundary of an epithelial tissue and the subsequent

invasion of these cells into surrounding tissues is important for cancer development

and wound healing, and is strongly associated with the epithelial-mesenchymal transi-

tion (EMT). Chemical signals, such as TGF-β, produced by surrounding tissue can be

uptaken by cells and induce EMT. In this work, we present a novel cell-based discrete

mathematical model of mechanical cellular relaxation, cell proliferation, and cell detach-

ment driven by chemically-dependent EMT in an epithelial tissue. A continuum descrip-

tion of the model is then derived in the form of a novel nonlinear free boundary problem.

Using the discrete and continuum models we explore how the coupling of chemical trans-

port and mechanical interactions influences EMT, and postulate how this could be used

to help control EMT in pathological situations.

https://doi.org/10.1088/1478-3975/abf425
https://www.biorxiv.org/content/10.1101/2020.12.09.418434v3
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5. Murphy RJ, Browning AP, Gunasingh G, Haass NK, Simpson MJ (2021). Designing

and interpreting 4D tumour spheroid experiments using mathematical models. Under

consideration at Nature Communications. bioRxiv preprint

Abstract

Tumour spheroid experiments are routinely used to study cancer progression and treat-

ment. However, experimental designs are inconsistent, leading to challenges in interpre-

tation and reproducibility. Using live-dead cell staining, and real-time cell cycle imaging,

we measure necrotic and proliferation-inhibited regions in many tumour spheroids using

various experimental designs that intentionally vary the initial spheroid size across multi-

ple cell lines, and involve making various measurements of the internal spheroid structure

using various temporal sampling frequencies. These data are difficult to compare and in-

terpret. However, using an objective mathematical modelling framework and statistical

identifiability analysis we quantitatively compare experimental designs and identify de-

sign choices that produce reliable biological insight. Measurements of internal spheroid

structure provide the most insight, whereas varying initial spheroid size and temporal

measurement frequency is less important. Our general framework applies to spheroids

grown in different conditions and with different cell types

https://doi.org/10.1101/2021.08.18.456910


CHAPTER 1. INTRODUCTION 20

1.4 Structure of thesis

This thesis is presented as a thesis by published papers. Each of the main chapters (Chapters

2, 3, 4, 5, and 6) include the publications listed in Section 1.3, respectively. Each chapter in-

cludes a preamble, an abstract and an introduction describing the problem of interest, relevant

background and relevant literature. All chapters are independent publications so there is par-

tial overlap in these sections. Each chapter then includes mathematical model development

and discussion of new mathematical and/or experimental results. Chapters conclude with a

summary of the research findings and suggestions for future work. Chapters 2A, 3A, 4A, 5A,

and 6A present supplementary material for each of Chapters 2, 3, 4, 5, and 6, respectively.

Supplementary material includes additional results, such as additional details of derivations,

mathematical and experimental results. Numerical methods are also presented in supplemen-

tary material. The structure of this thesis is then as follows.

Chapter 1 is the introduction. This includes an overview of mechanochemical and experi-

mental models in mathematical biology focusing on the two parts of this thesis: (i) mathematical

model development for mechanochemical models, and (ii) experimental design and mathe-

matical modelling of tumour spheroid experiments. Research questions, aims, objectives and

outcomes, structure of the thesis, and statements of joint authorship are stated.

Chapter 2 includes Publication 1, addresses objective 1 and research question 1. The key

results include a new discrete model describing cell movement due to mechanical interactions

in heterogeneous epithelial tissues, a derivation to obtain the corresponding continuum model,

and the continuum model. Using these new models we examine under what conditions the

discrete and continuum model show good agreement, explore slowly-varying-in-space and

rapidly-varying-in-space epithelial tissues, and discuss applications including an interpretation

of data from a breast cancer detection experiment. Supplementary material, such as additional

results and numerical methods, associated with publication 1, is presented in Chapter 2A.

Chapter 3 includes Publication 2, addresses objective 2 and research question 2. This

chapter extends the work of Chapter 2, by incorporating cell proliferation and cell death into

the model of Chapter 1. The key results include a discrete model describing mechanical cell

competition in heterogeneous epithelial tissues, a derivation to obtain the corresponding the

continuum model, and the continuum model. Using these models we examine under what

conditions the discrete and continuum model show good agreement, explore the evolution of

homogeneous tissues and heterogeneous tissues with a cancerous cells competing for space

with healthy cells. We advise why naively adding source/sink terms to a continuum model

without considering the underlying discrete model may lead to incorrect results. Supplemen-



CHAPTER 1. INTRODUCTION 21

tary material, such as additional results for homogeneous and heterogeneous populations and

numerical methods, associated with publication 2, is presented in Chapter 3A.

Chapter 4 includes Publication 3, addresses objective 3 and research question 3. This

chapter extends the work of Chapter 2 and 3, by considering a free boundary rather than a

fixed boundary and analysing the continuum model derived in earlier chapters. The key re-

sults include extending the continuum model to a free boundary and examining travelling wave

behaviour. Using this we show travelling wave solutions that may invade or retreat depending

on whether the carrying capacity density corresponds to cells being in compression or exten-

sion. Further, travelling wave solutions have well-defined fronts and are not associated with

heteroclinic orbits in the phase plane. Supplementary material, including additional results,

associated with publication 3, is presented in Chapter 4A.

Chapter 5 includes Publication 4, addresses objective 4 and research question 4. This

chapter extends the work of Chapter 2, 3, and 4, by incorporating diffusion of a chemical

that influences the rate at which cells detach from the tissue boundary, in a process called

epithelial-mesenchymal transition (EMT). In this new mechanochemical model, we focus on

exploring the role of mechanical interactions in epithelial-mesenchymal transitions (EMT). The

key results include a new discrete model describing the role of mechanical interactions in

epithelial-mesenchymal transitions, a derivation to obtain the corresponding the continuum

model, and the continuum model. Using this novel nonlinear free boundary problem we explore

how mechanochemical coupling influences epithelial-mesenchymal-transitions. Supplemen-

tary material, such as numerical methods and additional results, associated with publication 4,

is presented in Chapter 5A.

Chapter 6 transitions to Part 2 of this thesis, addresses objective 5 and research ques-

tion 5. This chapter uses Greenspan’s mathematical model [79] which is a mechanochemical

model, but a different mathematical model to that derived in previous chapters. The key re-

sults include: performing tumour spheroid experiments with real-time cell cycle imaging where

I collect an abundance of experimental data across a range of experimental designs; verifica-

tion of the Greenspan’s mathematical model to that experimental data; and development of an

objective mathematical modelling framework with statistical identifiability analysis to quantita-

tively compare experimental designs and identify design choices that produce reliable biolog-

ical insight to provide recommendations for future studies. Supplementary material, such as

additional experimental images, experimental designs and numerical methods, is presented in

Chapter 6A.

Chapter 7 presents a summary of the research and suggestions for future research.
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1.5 Statement of joint authorship

Here we outline the contributions of the Ph.D. candidate and the co-authors to each article.

All co–authors consent to the presentation of this material in this thesis. Each chapter also

includes a signed statement of contribution of co-authors for thesis by published paper.

Chapter 2: Mechanical relaxation in heterogeneous populations

The corresponding article is:

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2019). A one-dimensional individual-based

mechanical model of cell movement in heterogeneous tissues and its coarse-grained approx-

imation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences. 475:20180838. doi:10.1098/rspa.2018.0838 biorxiv preprint

Statement of joint authorship:

• Ryan J. Murphy (Candidate): Conceived and designed the study, derived the continuum

model, developed the codes for numerical simulation of the discrete and continuum mod-

els, performed numerical simulations, generated results, interpreted results, drafted the

manuscript, and revised the manuscript during the peer-review process.

• Pascal R. Buenzli: Conceived and designed the study and provided comments and gave

final approval for publication. Supervised the research.

• Ruth E. Baker: Conceived and designed the study and provided comments and gave

final approval for publication.

• Matthew J. Simpson: Conceived and designed the study and provided comments and

gave final approval for publication. Supervised the research. Acted as corresponding

author.

https://doi.org/10.1098/rspa.2018.0838
https://www.biorxiv.org/content/10.1101/485276v3
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Chapter 3: Mechanical cell competition

The corresponding article is:

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020). Mechanical cell competition in het-

erogeneous epithelial tissues. Bulletin of Mathematical Biology. 82:130. doi:10.1007/s11538-

020-00807-x biorxiv preprint

Statement of joint authorship:

• Ryan J. Murphy (Candidate): Conceived and designed the study, derived the contin-

uum model, developed the codes for numerical simulation of the discrete and continuum

models, performed numerical simulations, generated results, interpreted results, drafted

the manuscript, and revised the manuscript during the peer-review process. Acted as

corresponding author.

• Pascal R. Buenzli: Conceived and designed the study and provided comments and gave

final approval for publication. Supervised the research.

• Ruth E. Baker: Conceived and designed the study and provided comments and gave

final approval for publication.

• Matthew J. Simpson: Conceived and designed the study and provided comments and

gave final approval for publication. Supervised the research.

https://doi.org/10.1007/s11538-020-00807-x
https://doi.org/10.1007/s11538-020-00807-x
https://www.biorxiv.org/content/10.1101/869495v2
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Chapter 4: Travelling waves

The corresponding article is:

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2021). Travelling waves in a free boundary

mechanobiological model of an epithelial tissue. Applied Mathematics Letters. 111: 106636.

doi: 10.1016/ j.aml.2020.106636 arxiv preprint

Statement of joint authorship:

• Ryan J. Murphy (Candidate): Conceived and designed the study, derived the continuum

model, developed the codes for numerical simulation of the continuum models, performed

numerical simulations, generated results, interpreted results, drafted the manuscript, and

revised the manuscript during the peer-review process. Acted as corresponding author.

• Pascal R. Buenzli: Supervised the research, and provided comments and gave final

approval for publication.

• Ruth E. Baker: Provided comments and gave final approval for publication.

• Matthew J. Simpson: Supervised the research, and provided comments and gave final

approval for publication.

https://doi.org/10.1016/j.aml.2020.106636
https://arxiv.org/pdf/2005.13925.pdf
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The corresponding article is:

Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo H, Baker RE, Simpson MJ (2021).

The role of mechanical interactions in epithelial mesenchymal transitions. Physical Biology.

18:046001. doi:10.1088/1478-3975/abf425 biorxiv preprint

Statement of joint authorship:

• Ryan J. Murphy (Candidate): Conceived and designed the study, derived the contin-

uum model, developed the codes for numerical simulation of the discrete and continuum

models, performed numerical simulations, generated results, interpreted results, drafted

the manuscript, and revised the manuscript during the peer-review process. Acted as

corresponding author.

• Pascal R. Buenzli: Conceived and designed the study and provided comments and gave

final approval for publication. Supervised the research.

• Tamara A. Tambyah: Provided comments and gave final approval for publication.

• Erik W. Thompson: Provided advice on cancer and EMT. Provided comments and gave

final approval for publication.

• Honor Hugo: Provided advice on cancer and EMT. Provided comments and gave final

approval for publication.

• Ruth E. Baker: Provided comments and gave final approval for publication.

• Matthew J. Simpson: Conceived and designed the study and provided comments and

gave final approval for publication. Supervised the research.
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2.0 Preamble

An article published in Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2019). A one-dimensional individual-based

mechanical model of cell movement in heterogeneous tissues and its coarse-grained approx-

imation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences. 475:20180838. doi:10.1098/rspa.2018.0838. bioRxiv preprint.

Selected for the cover of July 2019 issue of the journal.

This chapter includes Publication 1, addresses objective 1 and research question 1. The

key results include a new discrete model describing cell movement due to mechanical interac-

tions in heterogeneous epithelial tissues, a derivation to obtain the corresponding continuum

model, and the continuum model. Using these new models we examine under what conditions

the discrete and continuum model show good agreement, explore slowly-varying-in-space and

rapidly-varying-in-space epithelial tissues, and discuss applications including an interpretation

of data from a breast cancer detection experiment. Supplementary material, such as additional

results and numerical methods, associated with publication 1, is presented in Chapter 2A.

https://doi.org/10.1098/rspa.2018.0838
https://www.biorxiv.org/content/10.1101/485276v3
https://royalsocietypublishing.org/toc/rspa/2019/475/2227
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2.1 Abstract

Mechanical heterogeneity in biological tissues, in particular stiffness, can be used to distin-

guish between healthy and diseased states. However, it is often difficult to explore relation-

ships between cellular-level properties and tissue-level outcomes when biological experiments

are performed at a single scale only. To overcome this difficulty we develop a multi-scale

mathematical model which provides a clear framework to explore these connections across

biological scales. Starting with an individual-based mechanical model of cell movement, we

subsequently derive a novel coarse-grained system of partial differential equations governing

the evolution of the cell density due to heterogeneous cellular properties. We demonstrate that

solutions of the individual-based model converge to numerical solutions of the coarse-grained

model, for both slowly-varying-in-space and rapidly-varying-in-space cellular properties. We

discuss applications of the model, such as determining relative cellular-level properties and an

interpretation of data from a breast cancer detection experiment.
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2.2 Introduction

Biological tissues are heterogeneous and multi-scale by their very nature (Figure 6.1(a)). This

heterogeneity exists at all scales from sub-cellular to cellular, and from cellular to tissue lev-

els [11, 72, 227]. We focus on cellular interactions driven by mechanical stiffness which is

of great importance in a variety of applications including epithelial tissue mechanics, cancer

progression [193], cancer invasion and metastasis [170], stiffness as a biomarker in cancer de-

tection [10,103,182,221], wound healing [61], and morphogenesis [66]. Tissue-level stiffness

information [131] has been available for much longer than cellular-level stiffness data which

requires advanced technology, such as atomic force microscopy [52, 126–128]. However, dif-

ficulties arise in relating cellular-level data with tissue-level information when experiments are

conducted and analysed at a single scale only. Mathematical modelling with in silico simula-

tions provides a clear framework to explore these connections across biological scales.

Mathematical models of cell populations are broadly classified as either discrete or con-

tinuum. Discrete models, reviewed in [175, 179], include cellular automata models, cellular

Potts models, cell-centre models [179], vertex models, subcellular-element models [196], and

tensegrity models [104]. Discrete models explicitly describe cellular-level interactions but often

lack macroscopic intuition. Continuum models on the other hand often provide no cellular-level

information [17] but can be more adept at including concepts of macroscopic stiffness [45,181]

and, for large numbers of cells, as in epithelial tissues, tend to be less computationally expen-

sive. Hybrid intermediate models also exist which consider the multi-scale nature of the prob-

lem [13, 176, 236]. A range of models specifically examine the role of mechanics [186, 224].

However, in this work we focus on models which relate cellular-level details to tissue-level

outcomes. These models have been developed with a variety of coarse-graining techniques

and assumptions, including the use of slowly varying and periodic assumptions on the het-

erogeneity in the model [68, 174], correlation functions [147, 153], and interaction forces from

potentials [27]. Few of these models explore the role of stiffness. The work of Murray et

al. [164–167] explicitly incorporates cell stiffness; they derive a nonlinear diffusion equation

governing the evolution of the cell density in space and time, however the framework focuses

exclusively on homogeneous cell populations. Here, we extend this framework to heteroge-

neous cell populations.

The key focus of this work is to present a novel coarse-grained system of partial differential

equations governing the evolution of the cell density, cell stiffness and resting cell length, from

a heterogeneous cell-based model of epithelial tissue mechanics. The cell stiffness and resting

cell length are constant for each cell and are simply transported in space by cell movements.
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The motion in this model is governed by cell-cell interaction forces modelled with Hooke’s law.

In extending the work of Murray et al. [164], we provide a more general derivation of the govern-

ing equations, see Section 2.3, which is robust to the inclusion of both slowly-varying-in-space

and rapidly-varying-in-space cellular properties, see Section 2.4. We show that solutions from

the discrete model converge to the corresponding continuum model solution, under appropriate

scalings. Additional results in Section 2.4 show the model can be applied to interpret exper-

imental and clinical observations relating to breast cancer detection. Key algorithms used to

generate results are available on GitHub.

2.3 Model description

In this section we describe the individual-based model, which we refer to throughout this work

as the discrete model, and derive a corresponding coarse-grained approximation in the form

of system of partial differential equations, which we refer to as the continuum description.

The continuum limit usually assumes that the number of discrete entities that makes up the

system tends to infinity [60, 68], while the size of the domain also tends to infinity, as in the

thermodynamic limit, or the size of a length scale tends to zero, both in such a way that the

ratio of the size of length scale to the number of discrete entities is fixed. Here, to maintain

a fixed total tissue length and a fixed total number of cells in the continuum limit, we instead

assume that each cell is internally represented by several identical springs. We then take the

continuum limit by considering that the number of springs per cell tends to infinity whilst the

spring length tends to zero.

2.3.1 Discrete model

In this work, the discrete model describes an epithelial tissue formed by cells in contact with

each other. For simplicity, we assume that the tissue can be modelled as a one-dimensional

chain of N cells with fixed total length L. Tissues in the body commonly evolve in confined

spaces, for example imposed by bone tissues, and are subjected to strong geometric con-

straints so we fix the left tissue boundary at x = 0 and the right tissue boundary at x = L. This

also allows us to focus on internal cellular heterogeneity. Alternate free boundary conditions

are possible [19, 136, 164] but we do not focus on such free boundary conditions in this work.

Each cell can have distinct mechanical properties (Figure 6.1). This model could be used to

represent a single tissue with intrinsic heterogeneity or multiple adjacent tissues with different

properties. Each cell interacts with its neighbour through an effective interaction force which

https://github.com/ryanmurphy42/Murphy2019.git
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(a) Stiffness in a human breast cancer biopsy 

x = 0 x = Lx = s(t)

(c) Special case of model schematic with two adjacent tissues

x1 = 0 xN+1 = L

(b) Model schematic for heterogeneous cells, with m springs per cell
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Figure 2.1: Stiffness heterogeneity in biological tissues. (a) Post atomic force microscopy histological
overview of an entire breast cancer biopsy, where dark regions and pink regions are associated with
low and high cell stiffness, respectively. Reproduced from [182] with permission. (b) Individual-based
model schematic for arbitrarily heterogeneous tissue with N cells and m identical springs per cell. Cell
i occupies the region xi(t) < x < xi+1(t) has cell stiffness ki and resting cell length ai. Spring ν in cell
i, occupies the region x(ν)i (t) < x < x

(ν+1)
i (t), is prescribed with spring stiffness k(ν)i = mki and resting

spring length a(ν)i = ai/m. The first and final spring boundaries in cell i coincide with the cell boundary
positions so that x(1)i (t) = xi(t) and x(1)i+1(t) = xi+1(t) for all time. The cell and spring boundaries are
shown as discs and hexagons, respectively. (c) Individual-based model schematic for a special case
with two adjacent tissues, similarly this could model a heterogeneous tissue with two cell types. Cells
in tissue i are prescribed with cell stiffness ki and resting cell length ai for i = 1, 2. Here each cell is
represented with a single spring. The position of the interface between the two tissues is at x = s(t).
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could represent cell-cell adhesion [109] or compressive stresses [231]. We consider cell i, for

i = 1, 2, . . . , N , to have its left boundary at xi(t) and its right boundary at xi+1(t), with x1(t) = 0

and xN+1(t) = L at all times. The cell has a prescribed cell stiffness, ki, and resting cell length,

ai. Inside the tissue, Newton’s second law of motion governs the motion of each cell boundary

such that

Mi
d2xi
dt2

= fi+1 − fi + F visc
i , i = 2, 3, . . . , N, (2.3.1)

where Mi is the mass associated with cell boundary i, F visc
i is the viscous force associated

with cell boundary i, and we model interaction forces at cell boundary i using Hooke’s law,

fi = ki−1(xi − xi−1 − ai−1), i = 1, 2, . . . , N. (2.3.2)

The viscous force experienced by cells, due to cell-medium and cell-matrix interactions, is

modelled with F visc
i = −ηdxi(t)/dt, where η > 0 is the viscosity coefficient. Cells migrate

in dissipative environments and this is commonly modelled by assuming that the motion is

overdamped [151,164], hence the term on the left of Equation (2.3.1) is zero, giving,

η
dxi
dt

= fi+1 − fi, i = 2, 3, . . . , N. (2.3.3)

This model, as presented thus far, considers each cell to be represented by a single spring [19,

164] which is sufficient to describe the discrete model. However, when we derive the continuum

model, to maintain L and N , we represent each cell internally with m identical springs and we

will later consider m� 1, which corresponds to the spring length tending to zero, see Section

2.32.3.2. The corresponding discrete model for m springs per cell is now described. Cell i

with boundaries xi and xi+1 now has m + 1 spring boundaries, x(1)
i , x

(2)
i , . . . , x

(m)
i , x

(1)
i+1, with

xi = x
(1)
i and xi+1 = x

(1)
i+1, (Figure 6.1(c)). The cell length is related to the spring length through

the scaling xi+1 − xi ∼ m
(
x

(ν+1)
i − x(ν)

i

)
as m→∞, and with equality for all m as t → ∞.

Each spring ν in cell i is prescribed with a spring stiffness k(ν)
i and resting spring length a

(ν)
i

related to cell properties ki and ai through

k
(ν)
i = mki, a

(ν)
i =

ai
m
, i = 1, 2, . . . , N, ν = 1, 2, . . . ,m. (2.3.4)
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The viscosity coefficient for a cell boundary, η, is related to the viscosity coefficient for a spring

boundary, η(ν), through η(ν) = η/m. Then the corresponding spring boundary equations are

η(ν) dx
(ν)
i

dt
= f

(ν+1)
i − f (ν)

i ,

f
(ν)
i = k

(ν−1)
i

[
x

(ν)
i − x

(ν−1)
i − a(ν−1)

i

]
.

(2.3.5)

The scalings in Equation (2.3.4) and for the viscosity coefficient are chosen such that the cell

boundary velocities are maintained and are independent of m, i.e. such that dx
(1)
i /dt = dxi/dt.

These scalings are supported by results from the discrete model with varying m, see Section

2.4.

The discrete model is governed by Equation (2.3.3) with the fixed boundary conditions for

a system with a single spring per cell, and by Equation (2.3.5) with fixed boundary conditions

for a system with m springs per cell. In each situation the discrete model forms a deterministic

coupled system of ordinary differential equations that we can solve numerically, see Supple-

mentary Material Section 1. We can also solve each system with an eigenmode decomposition

to conveniently determine the long-time steady state solution.

2.3.2 Derivation of continuum model

We now derive a coarse-grained system of partial differential equations describing the evolution

of cell density at a larger scale. To do so we take the continuum limit by increasing the number

of springs per cell, m, while maintaining the total number of cells, N , and tissue length, L, fixed,

and by performing spatial averages over length scales involving a sufficiently large number

of cells to define continuous densities, but sufficiently small to retain spatial heterogeneities.

We first define the microscopic cell density, q̂(x, t), in terms of the spring boundary positions,

x
(ν)
i (t), as

q̂(x, t) =
1

m

N∑
i=1

m∑
ν=1

δ
(
x− x(ν)

i (t)
)
, (2.3.6)

where δ is the Dirac delta function [60,133]. Integrating Equation (2.3.6) over the tissue domain,

0 < x < L, gives the total number of cells, N , which is independent of m. We introduce a

mesoscopic length scale δx such that a(ν)
i � ai � δx� L and define a local spatial average

which, for the microscopic cell density, q(x, t) = 〈q̂(x, t)〉, is

〈q̂(x, t)〉 =
1

2δx

∫ x+δx

x−δx
q̂(y, t) dy. (2.3.7)



CHAPTER 2. MECHANICAL RELAXATION IN HETEROGENEOUS POPULATIONS 38

Differentiating Equation (2.3.7) with respect to time leads to the general conservation law

∂q(x, t)

∂t
= − ∂

∂x

〈
1

m

N∑
i=1

m∑
ν=1

δ
(
x− x(ν)

i (t)
) dx

(ν)
i

dt

〉
, (2.3.8)

where we use properties of the Dirac delta distribution [133] and take the spatial derivative

outside of the average by making use of the fact that δx is small. The averaged term on the right

of Equation (2.3.8) is the coarse-grained cell density flux, j(x, t), describing spring migration

at the mesoscopic scale, expressed explicitly in terms of the spring boundary positions and

velocities [60]. We now introduce three field functions, f(x, t), k(x, t), a(x, t), for the cell-cell

interaction force, the cell stiffness and the resting cell length, respectively, defined such that

f
(
x

(ν)
i (t), t

)
= f

(ν)
i , k

(
x

(ν)
i (t), t

)
= mk

(ν)
i , a

(
x

(ν)
i (t), t

)
=
a

(ν)
i

m
, (2.3.9)

where the scalings for f , k, and a, with respect to m, agree with the scalings from the discrete

system, see Equation (2.3.4). The field functions k(x, t) and a(x, t) capture the assumption that

spring properties and respective cell properties are constant along spring boundary trajecto-

ries, x(ν)
i (t). To represent the distribution of spring lengths across the domain, we introduce a

continuously differentiable function, l(x, t), which we define such that

l
(
x

(ν)
i (t), t

)
= l

(ν)
i (t) = x

(ν+1)
i (t)− x(ν)

i (t), (2.3.10)

where l
(ν)
i � ai � δx � L. Writing Equation (2.3.5) in terms of these continuous variables,

expanding each cell-cell interaction force using the small parameter l(ν)
i , using the viscosity

coefficient scaling, and simplifying to leading order gives,

η
dx

(ν)
i

dt
= m

[
f

(ν+1)
i − f (ν)

i

]
= m

[
f
(
x

(ν+1)
i (t), t

)
− f

(
x

(ν)
i (t), t

)]
= m

∂f
(
x

(ν)
i (t), t

)
∂x

l
(ν)
i +O

([
l
(ν)
i

]2
)
.

(2.3.11)

Substituting Equation (2.3.11) into Equation (2.3.8), relating the spring length to the cell den-

sity with l
(
x

(ν)
i (t), t

)
= 1/

[
mq
(
x

(ν)
i (t), t

)]
, and integrating over the spatial average interval,

(x− δx, x+ δx) gives

j(x, t) =
1

η

( n

2δx

) 1

n

n∑
i=1

1

m

m∑
ν=1

∂f
(
x

(ν)
i (t), t

)
∂x

1

q
(
x

(ν)
i (t), t

) , (2.3.12)
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where n is the number of cells in the interval (x − δx, x + δx) and i has been reset to count

these cells. Then, taking the limit as m → ∞ and performing an average over the m springs

per cell, gives

j(x, t) =
1

η

( n

2δx

) 1

n

n∑
i=1

∂f(xi(t), t)

∂x

1

q(xi(t), t)
. (2.3.13)

We apply a mean field approximation, as n � 1 in (x − δx, x + δx) due to ai � δx, by

substituting q(xi(t), t) and ∂f(xi(t), t)/∂x in the sum with the average density q(x, t) and the

average interaction force gradient ∂f/∂x in the interval (x− δx, x+ δx). The factor 1/q is now

independent of i and cancels with the factor n/(2δx) which represents the density of cells in

the spatial average interval. Then the coarse-grained cell density flux is

j(x, t) =
1

η

∂f(x, t)

∂x
, (2.3.14)

which provides us with an important physical interpretation and is directly related to the ve-

locity, net force and cell-cell interaction force gradient. By inspection of Equation (2.3.11) and

Equation (2.3.14), we see that the cell density flux, j, is an advective flux j = qu, where

u(x, t) = 〈dxi/dt〉 is the average velocity induced by the average force gradient 〈∂f/∂x〉. We

also see that the net force is given by ηj/q and the spatially averaged interaction force gradient

is given by ηj.

Substituting Equation (2.3.14) into Equation (2.3.8) gives

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
. (2.3.15)

We now return to Equation (2.3.9) and differentiate with respect to time to derive an evolu-

tion equation for the cell stiffness function

0 =
d

dt

[
k
(
x

(ν)
i (t), t

)
−mk(ν)

i

]
=
∂k
(
x

(ν)
i (t), t

)
∂t

+
dx

(ν)
i (t)

dt

∂k
(
x

(ν)
i (t), t

)
∂x

.
(2.3.16)

Using Equation (2.3.11) and similar developments, the evolution equations for the cell stiffness

and resting cell length expressed in terms of mesoscopic variables become

∂k(x, t)

∂t
+ u(x, t)

∂k(x, t)

∂x
= 0, (2.3.17)
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∂a(x, t)

∂t
+ u(x, t)

∂a(x, t)

∂x
= 0. (2.3.18)

Written in terms of velocity we identify the left-hand sides of Equations (2A.2.2) and (2A.2.3)

as the convective derivatives of the cell properties.

In summary, the governing equations of the coarse-grained model are given by Equations

(2A.2.1), (2A.2.2) and (2A.2.3) with the interaction force f given by

f(x, t) = k(x, t)

(
1

q(x, t)
− a(x, t)

)
. (2.3.19)

This results in a system of four self-consistent equations for the continuous fields q(x, t), k(x, t),

a(x, t), f(x, t) in terms of spatial position rather than particle trajectories. The initial conditions

for the average cell density, cell stiffness and resting cell length are

q(x, 0) = q0(x), k(x, 0) = k0(x), a(x, 0) = a0(x), 0 < x < L, (2.3.20)

together with no flux boundary conditions for the average cell density, due to the microscopic

motion constraints, and Dirichlet boundary conditions for the cell stiffness and resting cell

length, as cell properties are constant along cell boundary trajectories,

∂f(x, t)

∂x
= 0, k(x, t) = k0(x), a(x, t) = a0(x), x = 0, L. (2.3.21)

These governing partial differential equations (2A.2.1), (2A.2.2), (2A.2.3), (2A.2.4) are solved

numerically with the initial conditions (2.3.20) and boundary conditions (2.3.21), see Supple-

mentary Material Section 2. With homogeneous cell populations the governing equations re-

duce to the single nonlinear density diffusion equation previously derived in [164],

∂q

∂t
=

∂

∂x

(
k

ηq2

∂q

∂x

)
. (2.3.22)
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2.4 Results and discussion

In this section we compare solutions of the continuum and discrete models with the expectation

that as the number of springs per cell, m, increases solutions from the discrete model converge

to the corresponding continuum solution.

2.4.1 Homogeneous cell population

We first consider a homogeneous cell population, with one spring per cell, m = 1, to illustrate

the time evolution of the cell density flux during mechanical relaxation of the tissue. To compare

results from the discrete and continuum systems we choose the initial cell configuration (Figure

6.2(a)) to represent a normally distributed cell density,

q0(x) =
λ√

2πσ2
exp

(−(x− µ)2

2σ2

)
, 0 < x < L, (2.4.1)

with mean position µ = 5 and variance σ = 3. We choose λ to satisfy
∫ L

0 q0(x) dx = 40

so that with L = 10 the total number of cells is N = 40, see Supplementary Material Sec-

tion 1. Then, using the discrete model, we observe that the system relaxes to a uniform cell

distribution (Figure 6.2(a)). Figures 6.2(b) and 6.2(c) show how the density and velocity, re-

spectively, propagate along the cell boundary characteristics and demonstrate that the system

undergoes temporal relaxation to a steady state configuration. With an eigenmode decom-

position of the governing equations of the discrete system, given by Equation (2.3.3) and the

fixed boundary conditions, we find all eigenvalues are negative which explains the exponential

decay behaviour.

We determine the discrete cell density as the inverse of the spacing between cell boundary

trajectories, qi = 1/(xi+1 − xi) and we assign this value throughout the region xi < x <

xi+1. We now compare this discrete information with the density from the continuum system,

q, obtained by solving Equations (2A.2.1), (2A.2.2), (2A.2.3), and (2A.2.4). In Figure 6.2(d)

we see that the initially normally distributed density tends to the uniform density Q, given by

lim
t→∞

q(x, t) = Q = N/L, which is independent of k and a. From Equation (2A.2.1) we see that

this motion is driven by imbalances in the local interaction force field. We relate this to the

velocity, u = (∂f/∂x)/(ηq) from Section 2.3, and we see that as the local imbalances tend to

zero the cell boundary velocities tend to zero (Figure 6.2(e)). Due to fast dynamics followed by

slow long-term dynamics, results for t = 10 and t = 60 are mostly overlapping with the steady

state (Figure 6.2(e)). This agrees with the interpretation of the discrete system from Equation

(2.3.3).
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Figure 2.2: Results for homogeneous k and a, with N = 40 and m = 1. (a) Snapshots of cell bound-
ary positions and cell lengths at t = 0, 5, 15, 60. (b) Characteristic diagram for cell boundary position
evolution for 0 ≤ t ≤ 65. Colour denotes the cell density. Black lines with dots represent snapshots
in (a) and (d). (c) Characteristic diagram for cell position evolution for 0.0 ≤ t ≤ 0.8. Colour denotes
velocity. Black lines and dots represent snapshots in (e). (d) Cell density snapshots at t = 0, 5, 10, 60.
Results from discrete/continuum system displayed as stepped/solid lines. (e) Velocity snapshots at
t = 0.0, 0.4, 10.0, 60.0. Results from discrete simulation and continuum system displayed as dashed/solid
lines. Arrows indicate the direction of increasing time.
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2.4.2 Heterogeneous cell population

Here we present results for slowly-varying-in-space and piecewise constant heterogeneous

cell populations.

Slowly varying cell population

For slowly-varying-in-space cellular properties, we explore how solutions of the discrete system

converge to the solution of the continuum system as m increases. We consider heterogeneity

in k and homogeneous a so that, on average, cells are in compression. Figure 6.3 depicts how

the system relaxes to a non-uniform density distribution, due to cell stiffness heterogeneity, as

the velocity field u tends to zero. From this simulation, we observe higher density in regions

of higher k. This prediction agrees with the steady state solution to the coarse-grained model,

governed by Equations (2A.2.1), (2A.2.2), (2A.2.3), and (2A.2.4),

Q(x) =
K(x)

bη +K(x)A(x)
, (2.4.2)

where Q(x) = lim
t→∞

q(x, t), K(x) = lim
t→∞

k(x, t) and A(x) = lim
t→∞

a(x, t), are steady-state solu-

tions and b is a constant of integration that is related to N . We also observe that, as cell

properties are constant along trajectories, the cell stiffness evolves at a fixed location in space.

We see in Figure 6.3(d-h) that there is close agreement between the discrete model and the

continuum solutions as m increases. It is notable that even for low m we have excellent agree-

ment between the discrete density and the continuum density at the centre of each spring.

However, at spring boundaries the agreement does not hold as well for low m. We see sim-

ilar discrete-continuum agreement when we consider other examples with heterogeneous k

and homogeneous a, with homogeneous k and heterogeneous a, and heterogeneous k and

heterogeneous a (Supplementary Figures S3-S6).
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Figure 2.3: Results for heterogeneous k and homogeneous a with N = 10, k0(x) = 1 + 0.1(x − 5)2,
and a0(x) = 0. (a,b) Characteristic diagram for spring boundary position evolution for 0.00 ≤ t ≤ 16.25,
with m = 4 so that every fourth trajectory represents a cell boundary. Colour denotes (a) cell density,
(b) cell stiffness. In (a,b) black lines and dots represent times for snapshots in (c-h). (c,e,g) Cell density
snapshots at t = 0.0, 2.5, 15.0. (d,f,h) Cell stiffness snapshots at t = 0.0, 2.5, 15.0. In (c-h) lines display
results for N = 10 with m = 1, 2, 4, and continuum system.
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Piecewise constant cell population

In this section, we consider a simple scenario with two adjacent tissues, modelled by assuming

sharp inhomogeneities in cellular properties. This may represent the boundary between a

malignant tissue and a normal tissue. We first explore how solutions from the discrete system

converge to the corresponding continuum solution asm increases, under these rapidly-varying-

in-space conditions. Each tissue has homogeneous cell properties given by cell stiffnesses

k1, k2 and resting cell lengths a1, a2 in the left and right tissue, respectively, with interface

position s(t) (Figure 6.1(b)). For initial conditions, we choose a uniform density, q0(x) = 1, cell

properties k1 = 1/2, k2 = 1, a1 = a2 = 0, L = 10 and s(0) = 5, respectively. The cell stiffness

discontinuity rapidly induces a sharp change in the density at s(t) followed by slower dynamics

until reaching a piecewise constant steady state as t → ∞ (Figure 6.4). Even with these

sharp inhomogeneities we again observe close agreement between solutions of the discrete

and continuum models, especially for the cell stiffness, k, where it is difficult to distinguish

between the discrete model with different m and the solution of the continuum model. For the

cell density, q, we again see that agreement at the spring boundaries improves as we increase

m. This holds especially well given that the numerical discretisation of the continuum model

does not explicitly follow the location of the interface, see Supplementary Material Section 2. It

could however be determined by evaluating the velocity, ds(t)/dt = u, at the interface position.

This simple mechanical relaxation scenario between two tissues enables us to infer some

information on the cellular-level properties ki and ai by considering the evolution of the interface

position, s(t). The steady state interface position, S = lim
t→∞

s(x, t), is given by

S =
k1a1
k2

+ L
N2
− a2

k1
k2N1

+ 1
N2

, (2.4.3)

which depends on k1/k2, a1 and a2. Here N1 and N2 represent the total number of cells in

the left and right tissues, respectively, see Supplementary Material Section 3. We can identify

S and L − S as the lengths of the left and right tissues, respectively, after their mechanical

relaxation.

To investigate the influence of k1/k2 we vary k1 and set k2 = 1. As we have fixed boundaries

at x = 0 and x = L, we set a1 = a2 = 0 to emphasise properties when we vary k1, and choose

a uniform density initial condition and N1 = N2 = 5. Evaluating s(t) numerically, for efficiency

with the discrete model from Equation (2.3.3), and S from Equation (2A.3.4), shows that if

k1 = 0 then S = L and the left tissue occupies the entire domain. As k1 → ∞ then S → 0 the

length of the left tissue decreases (Figures 2.5(a,c)).
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Similarly, to investigate the influence of a1, a2 we consider a1/a2, vary a1 and set a2 = 1.

We set k1 = k2 = 1 which only impacts the rate at which we reach the long-time solution. In

contrast to varying k1/k2, steady state results depend on the choice of a2, not just the ratio

a1/a2, see Equation (2A.3.4). For example, when a1 = 0 then S = 2.5 which corresponds

to a non-zero minimum left tissue length and a maximum length for the right tissue. We also

observe that S is proportional to a1 (Figures 2.5(b,d)).

We find that we can use the interface boundary velocities to infer cellular-level properties.

Plotting |S − s(t)| on a logarithmic scale against time shows that we can determine k1/k2 from

the gradient of the linear section and we can determine a1/a2 from the y-intercept (Figure

2.5(e,f )). We find that it is easier to distinguish the ratio k1/k2 than it is to distinguish the ratio

a1/a2. If the second tissue was a reference material with known k2, a2 we could then determine

k1, a1.
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Figure 2.4: Results for piecewise constant cell properties, with N = 10. (a,b) Characteristic diagram for
spring boundary position evolution for 0 ≤ t ≤ 100, with m = 4 so that every fourth trajectory represents
a cell boundary. Colour denotes (a) cell density, (b) cell stiffness. In (a,b) black lines and dots represent
times for snapshots in (c-h). (c,e,g) Cell density snapshots at t = 0.0, 2.5, 80.0. (d,f,h) Cell stiffness
snapshots at t = 0.0, 2.5, 80.0. In (c-h) lines display results from N = 10 with m = 1, 2, 4, and continuum
system.
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stiffness is varied. (b) Characteristics of the interface particle for varying a1/a2. The right tissue has
fixed resting cell length a2 = 1 while the resting cell length of the left tissue is varied. Analytical solution
for the steady state position of the interface position with given (c) relative cell stiffness and (d) relative
resting cell length. (e,f ) Absolute difference between position and steady state for interface position for
increasing time for varying (e) relative cell stiffness and (f ) relative resting cell length.
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2.4.3 Case study: breast cancer detection

Recent experiments have proposed a new method to classify breast biopsies in situations

where standard histological analysis is inconclusive [126, 128, 182]. The method is based on

determining the stiffness histogram distribution of the tissue using atomic force microscopy.

Normal tissues are associated with a single, well-defined unimodal stiffness peak, whereas

malignant tissues are associated with a bimodal distribution with a prominent low-stiffness

peak. Using our mathematical model, we are able to gain more insight into the differences

in mechanical properties of normal and malignant tissues at the cellular level, in particular,

the role of the resting cell length, which is not an easy quantity to measure experimentally. It

would be impossible to interpret this experimental data with previous models that deal only with

homogeneous cell populations.

For this case study, as the experimental data is relatively discrete, we use the discrete

model, which we consider to be a sufficiently simple yet insightful portrayal of the biological de-

tails. We set the initial state of the system by assuming a uniform initial density distribution and

by assigning the cell stiffness of the ith cell, ki, so as to reconstruct the unimodal stiffness pro-

file from Figure 1b (top) in [182]. To do so, we normalise the experimental stiffness histogram

and interpret the normalised value as the length fraction of the tissue containing stiffness in

the given histogram bin (Figure 2.6(a)). This is consistent with the experimental method which

implicitly assumes that the probability a cell is examined during a biopsy is proportional to its

size [182]. To estimate ki, we randomly sample the unimodal stiffness distribution and arbitrar-

ily assign them to cells i = 1, 2, . . . , N in ascending order. Note that the ordering of the cells

does not affect our results or the interpretation of our results in any way. We assume N = 1000,

m = 1 and L = 10 for illustration purposes. In order for this initial setup to be in equilibrium

despite the heterogeneity in stiffness in the tissue, the resting cell lengths ai must be cho-

sen heterogeneously, per the steady state system of discrete equations, see Supplementary

Material Section 4.

We proceed to consider how a bimodal stiffness distribution, associated with malignant tis-

sues, could arise from such an initial state with a unimodal stiffness distribution. The simplest

explanation is that a bimodal stiffness distribution may arise as a result of changes to individual

cell stiffnesses, ki, [81] e.g. due to some pre-cancerous biological mechanisms. This model

provides an alternative interpretation where the bimodal distribution may arise from changes

not solely to the individual cell stiffnesses but to the resting cell lengths also. We now present

an extreme case where the bimodal distribution may arise from changes in the resting cell

lengths only. Specifically, when we simulate the discrete model with the initial conditions as
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above, but modify the heterogeneity in the resting cell lengths, ai, to a bimodal profile with

high ai for very low ki, without changing their stiffnesses, ki, the cells redistribute themselves

in the tissue in such a way that the tissue stiffness histogram develops a bimodal distribu-

tion at mechanical equilibrium (Figure 2.6(c)). We note that this result is not surprising due

to the coupling of cell stiffness and resting cell length in the mathematical model. However,

this intuitive result may not have been clear had we relied upon experimental data and ex-

perimental observations alone. In addition, this approach assumes that cells may have very

different lengths which is consistent with biological observations. Specifically, it is understood

that breast cancer cells are less stiff and, in general, have a larger diameter in comparison to

normal breast cells [230]. This is consistent with other areas of biology, for example, in the

context of melanoma biology it is well accepted that cancer cells can be smaller than healthy

cells [92, 93]. We also note here that changes in the resting cell lengths have been assumed

in other works [256] to model two-way feedback between mechanical tensions and signalling

and here could similarly represent some unknown underlying pre-cancerous biological mech-

anisms.
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Figure 2.6: Breast cancer detection case study. (a) Initial unimodal stiffness distribution, normalised
by tissue length fraction, associated with normal tissues. (b) Initial cell stiffness ki and modified resting
cell length ai for each cell i = 1, 2, . . . , 1000, leading to a bimodal stiffness distribution. (c) Steady-state
stiffness distribution obtained with the modified resting cell lengths, exhibiting a bimodal distribution
associated with malignant tissues.
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2.5 Conclusion and future work

In this work, we present a one-dimensional cell-based model with heterogeneous cell proper-

ties, and its coarse-grained continuum approximation. The motion of cells is driven by cell-cell

interaction forces which could represent cell-cell adhesion [109] or compressive stresses [231].

Heterogeneous cell properties, cell stiffness and resting cell length, are constant for each cell

and are transported in space by cell movements. The continuum limit is taken by increasing the

number of springs per cell, while maintaining the number of cells in the tissue and its fixed total

length, and by considering spatial averages over length scales involving a large enough num-

ber of cells to define continuous densities but small enough to retain spatial heterogeneities.

Our results shows that solutions of the discrete model approach the solution of the contin-

uum model as the number of springs per cell increases whilst the spring length tends to zero,

even for rapidly varying spatial cell properties. Excellent agreement is observed even for few

springs per cell at the centre of each cell. For the examples presented in this work, we find

that the solution of the discrete model can be obtained much faster than the solution of the

continuum model. However, the time required to simulate the discrete model increases rapidly

with the number of cells. In contrast, the time required to simulate the continuum model is

independent of the number of cells. Therefore, when we have large numbers of cells, as in an

epithelial tissue, the continuum model is advantageous. Another advantage of the continuum

model is that we can quickly develop exact closed form expressions for the long-time inter-

face position which are more difficult to establish with the discrete model. Furthermore, the

continuum model allows us to understand macroscale phenomena which are not obvious from

microscopic interactions. The fact that the cell density flux in the continuum model, a macro-

scopic quantity, is explicitly related to the gradient of the cell-cell interaction force may have

been anticipated, but it is not obvious from the microscopic interactions that this leads to an

effective non-linear diffusive transport. Finally, because the continuum model exhibits explicit

relationships between macroscopic quantities, it will be more useful for inverse problems.

By dealing explicitly with heterogeneous cell populations, this model has many potential

applications. The first application we consider is a simple tissue relaxation simulation, where

we track the position of the interface between two distinct adjacent tissues as the system me-

chanically relaxes, to infer cellular-level properties. Results suggest it is easier to determine

the relative cell stiffnesses than it is to determine the relative resting cell lengths. Results also

show that when cells are, on average, in tension a tissue with lower stiffness extends and

compresses a tissue with higher stiffness. In the second application, we use the model to

interpret recent experiments in breast cancer detection which reveal distinct stiffness profiles
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associated with normal, benign and malignant tissues [182]. We show that a bimodal stiffness

distribution, associated with a malignant tissue, could arise from a unimodal stiffness distribu-

tion, associated with a normal tissue, from changes not just in cell stiffnesses but from changes

in the resting cell length’s only. The resting cell length is not an easily measured experimental

quantity and these results suggest that this could be an important variable to consider.

Many extensions of this work are possible, both mathematically and biologically. Important

extensions will be to introduce cell proliferation (Chapters 3, 4, and 5), apoptosis (Chapters

3, 4, and 5), and free boundaries (Chapters 4, and 5) where the continuum limit is less obvi-

ous [19, 136, 164]. Another interesting extension will be to generalise the cell-cell interaction

force law to include nonlinear effects for large separations [19,165]. Finally, the model’s ability

to relate cellular-level stiffness data and tissue-level information has many potential extensions

biologically including applying the model to particular scenarios such as epithelial tissue me-

chanics, cancer progression [170, 193], cancer detection [103, 182, 221], wound healing [61],

and morphogenesis [66].
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2A.1 Discrete model simulation

In this section, we describe how to perform simulations with the discrete model.

2A.1.1 Discrete equations

Here, we describe the method to solve Equation (2A.1.1), governing the discrete model, with

m springs per cell, for the position of each spring boundary, x(ν)
i , for i = 1, 2, . . . , N and

ν = 1, 2, . . . ,m and x(1)
N+1. The equations are included here for convenience:

η(ν) dx
(ν)
i

dt
= f

(ν+1)
i − f (ν)

i ; (2A.1.1)

f
(ν)
i = k

(ν−1)
i

(
x

(ν)
i − x

(ν−1)
i − a(ν−1)

i

)
. (2A.1.2)

2A.1.2 Converting cell density into initial positions

We now explain how to convert an initial distribution of density, q0(x), into an initial condition

for the discrete model by determining the initial spring boundary positions, x(ν)
i = x

(ν)
i (0), for

i = 1, 2, . . . , N and ν = 1, 2, . . . ,m, and x(1)
N+1. To solve for these positions we use the Matlab

fsolve function [5] applied to the system of the equations

x
(1)
1 = 0, (2A.1.3)

1

x
(ν−1)
i − x(ν)

i

+
1

x
(ν)
i − x

(ν+1)
i

x
(ν+1)
i − x(ν−1)

i

2

−m∂q0(x)

∂x

∣∣∣∣
x=xνi

= 0, (2A.1.4)

x
(1)
N+1 = L. (2A.1.5)

Equations (2A.1.3) and (2A.1.5) arise from the fixed boundary conditions. Equation (2A.1.4)

arises from equating the approximate numerical gradient of the density from the discrete sys-

tem at a position x(ν)
i with the gradient of q0(x) at the same position. To evaluate the numerical

gradient we use the midpoints of the domains x(ν−1)
i < x < x

(ν)
i and x

(ν)
i < x < x

(ν+1)
i+1 . The

density in the first domain is given by 1/
[
m
(
x

(ν)
i − x

(ν−1)
i

)]
and similarly 1/

[(
m(x

(ν+1)
i − x(ν)

i

)]
for the second domain (Figure S1).

2A.1.3 Assigning spring properties

In this section we explain our approach to assigning spring properties assuming that we know

the initial cell boundary positions, x(ν)
i , the initial cell stiffness distribution, k0(x), and initial
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xi xi xi

(xi       + xi   )/2 (xi    + xi        )/2

1/[m(xi    - xi       ]

1/[m(xi        - xi    )]

(ν)

(ν) (ν+1)(ν-1)

(ν-1) (ν) (ν) (ν+1)

(ν-1)

(ν+1) (ν)

Figure 2A.1: Schematic to determine the approximate numerical gradient of the density from the dis-
crete system at position xνi .

resting cell length distribution, a0(x). Here we consider the cell stiffness initial condition and

note that the same ideas apply to assign the resting cell length. We consider spring ν in cell

i, located at x(ν)
i < x < x

(ν+1)
i ; let x̃

(ν)

i be the position of the median of k0(x) in this domain,

and use this to define the discrete spring stiffness as k(ν)
i = mk0

(
x̃

(ν)
i

)
(Figure S2). For the

resting cell length this would be a(ν)
i = a0

(
x̃

(ν)
i

)
/m. This median position, x̃(ν)

i , is solved for

by equating the integral of the initial condition spring stiffness function in x(ν)
i < x < x̃

(ν)
i and

x̃
(ν)
i < x < x

(ν+1)
i ,

∫ x̃
(ν)
i

x
(ν)
i

k0(x) dx =

∫ x
(ν+1)
i

x̃
(ν)
i

k0(x) dx. (2A.1.6)

2A.1.4 Numerical methods

This discrete model, with m springs per cell, is governed by Equations (2A.1.1) with the fixed

boundary conditions x
(1)
1 = 0, x(1)

N+1 = L. Appropriate scalings of the cell properties are

required to determine the spring properties, k(ν)
i = mk0

(
x̃

(ν)
i

)
and a

(ν)
i = a0

(
x̃

(ν)
i

)
/m. The

viscosity coefficient must also be scaled appropriately through η(ν) = η/m. These form a

system of Nm− 1 ordinary differential equations, with the two boundary conditions, and initial

conditions for the positions, x(ν)
i , spring stiffnesses, k(ν)

i , and resting spring lengths, a(ν)
i , of

each spring ν in cell i, and viscosity coefficient for the system, η(ν). We solve this system

using Matlab ode15s [199]. Alternatively, this system can be analysed with an eigenmode

decomposition which is convenient to determine the steady state.
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xi xi

ki    = mk0(xi    )

xi

k0
x

(ν+1)(ν) (ν)

(ν)~

~

 (ν)

Figure 2A.2: Schematic to determine the position x̃(ν)i used to define the discrete spring stiffness value
for spring ν in cell i, k(ν)i = mk0

(
x̃
(ν)
i

)
.

2A.2 Continuum model simulation

Here we describe the numerical method used to solve the partial differential equations associ-

ated with the continuum description.

2A.2.1 Discretisation scheme

For convenience we re-state the governing equations:

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
; (2A.2.1)

∂k(x, t)

∂t
= −1

η

1

q(x, t)

∂f

∂x

∂k(x, t)

∂x
; (2A.2.2)

∂a(x, t)

∂t
= −1

η

1

q(x, t)

∂f

∂x

∂a(x, t)

∂x
; (2A.2.3)

f(x, t) = k(x, t)

(
1

q(x, t)
− a(x, t)

)
. (2A.2.4)

The first step is to substitute the interaction force from Equation (2A.2.4) into Equations

(2A.2.1), (2A.2.2) and (2A.2.3). We solve Equation (2A.2.1) implicitly, and we solve Equations

(2A.2.2) and (2A.2.3) for the cell stiffness and resting cell length, respectively, explicitly [50].

First, we uniformly discretise the domain with nodes spaced ∆x apart. The nodes are indexed

j = 1, . . . , R, where R is the total number of spatial nodes. We apply an upwinding scheme

using a numerically determined velocity at each node, which is defined for node j and time
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step n as vnj , given by

vnj =
1

η

1

qnj

[
knj+1

(
1

qnj+1

− anj+1

)
− knj−1

(
1

qnj−1

− anj−1

)]
. (2A.2.5)

We use non-constant time stepping for efficiency with the timestep to advance the numerical

solution from timestep n to timestep n+1 denoted ∆tn. The value of this timestep is determined

based on the maximum numerical velocity across all nodes at time n, maxj(v
n
j ), and is chosen

as ∆tn = min
(

0.001(∆x)2, 0.00001(∆x)2/maxj(v
n
j )
)

, where ∆x = 0.01 to produce Figure 4

and Supplementary Figures S3, S4 and S6, and ∆x = 0.05 otherwise.

We solve Equation (2A.2.1) using a Crank-Nicolson approximation. At the central nodes

we have

qn+1
j − qnj

∆tn
=− 1

2

1

(∆x)2

[
knj+1

η

(
1

qnj+1

− aj+1

)
− 2

knj
η

(
1

qnj
− aj

)
+
knj−1

η

(
1

qnj−1

− aj−1

)]
− 1

2

1

(∆x)2

[
kn+1
j+1

η

(
1

qn+1
j+1

− aj+1

)
− 2

kn+1
j

η

(
1

qn+1
j

− aj
)

+
kn+1
j−1

η

(
1

qn+1
j−1

− aj−1

)]
,

j = 3, . . . , R− 2, n = 0, . . . T,

(2A.2.6)

where we use the approximation

1

qn+1
j

=
qn+1
j(
qnj

)2 , (2A.2.7)

for the terms at timestep n+ 1 on the right-hand side of Equation (2A.2.6). This approximation

allows us to write the discretised system of equations in tridiagonal form. For the boundary

condition at x = 0, corresponding to node j = 1, we apply a second order forward difference

stencil so that

qn1 = 1

/[
an1 +

4kn2
3kn1

(
1

qn2
− an2

)
− kn3

3kn1

(
1

qn3
− an3

)]
. (2A.2.8)

To obtain the equation for node j = 2 we set j = 2 in Equation (2A.2.6) and replace qn1 with

Equation (2A.2.8). Similarly, to obtain an equation for node j = R at the right boundary x = L

we apply a second order backwards difference stencil,

qnR = 1

/[
anR −

knR−2

3knR

(
1

qnR−2

− anR−2

)
+

4knR−1

3knR

(
1

qnR−1

− anR−1

)]
. (2A.2.9)

This allows us to form an equation for node j = R− 1 also. Now we use the Thomas algorithm
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[254] to advance one time step for the equations governing nodes j = 2, . . . , R − 1. Using

the results for nodes j = 2, . . . , R − 1 and Equations (2A.2.8) and (2A.2.9) we can update the

boundary nodes qn+1
1 , qn+1

R .

While performing each temporal step we must also update the cell stiffnesses, knj , and

resting cell lengths, anj , at each node. At the boundaries, x = 0 and x = L, corresponding to

nodes j = 1 and j = R, these cell properties are fixed so kn1 = k0
1 and an1 = a0

1 for n = 1, . . . , T .

For the interior nodes j = 2, . . . , R−1, we apply an explicit method with upwinding. The sign of

maxj(v
n
j ) determines whether we apply forward or backward difference stencils. For example,

if maxj(v
n
j ) > 0 then we apply a backward first order difference to the cell stiffness, Equation

(2A.2.2),

kn+1
j − knj

∆tn
= −1

η

knj − knj−1

(∆x)2

[
knj

(
1

qnj
− anj

)
− knj−1

(
1

qnj−1

− anj−1

)]
, j = 2, . . . , R− 1.

(2A.2.10)

Cell properties are constant along cell boundary trajectories. Therefore, if we have a cell

property which is initially homogeneous it will remain homogeneous. The numerical method

can then be simplified by not simulating the related cell property equation and replacing its

appearance in the other equations with its constant value.

2A.3 Steady state analysis for two tissue model

We obtain an analytical expression for the steady state position of the interface, S, between

two distinct adjacent tissues. Suppose that the left-most tissue is characterised by N1 cells

with stiffness k1 and resting spring length a1, for 0 < x < S. Similarly, suppose that the

right-most tissue is characterised by N2 cells with stiffness k2 and resting spring length a2

for S < x < L. Considering the continuum system given by Equations (2A.2.1), (2A.2.2),

(2A.2.3), and (2A.2.4) for each tissue at steady state, the equations governing the evolution

of the cellular properties are trivially solved as we have a homogeneous cell population in

each tissue. However, solving Equation (2A.2.1) and applying the no flux density boundary

conditions gives, for the first tissue,

k1

η

(
1

q1
− a1

)
= c1, 0 < x < S, (2A.3.1)
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where c1 is an arbitrary constant. At steady state the forces at the interface, x = S, are at

equilibrium, giving,

k1

η

(
1

q1
− a1

)
=
k2

η

(
1

q2
− a2

)
. (2A.3.2)

Relating this mesocopic density to the microscopic density for the tissue we have

q1 =
N1

S , q2 =
N2

L− S . (2A.3.3)

Substituting Equation (2A.3.3) into Equation (2A.3.2) and rearranging gives

S =

k1a1

k2
+

L

N2
− a2

k1

k2N1
+

1

N2

. (2A.3.4)

2A.4 Breast cancer detection case study: model implementation

Here we present our method to obtain a user specified steady state cell stiffness histogram

consistent with the initial ki by choosing the initial condition for the resting spring length, ai.

2A.4.1 Choosing the resting spring length to choose the steady state

The possible final steady state spring stiffness histogram distributions must be consistent with

the initial ki as spring properties are constant along cell trajectories. For illustrative purposes

we choose the steady state spring stiffness histogram distribution we wish to obtain as guided

by experimental results [182]. With this choice we can read off the histogram frequencies that

describe the coverage of the each histogram interval at steady state. For simplicity, we assume

that cells with ki in the same histogram interval are of equal length at steady state. Then the

length of each cell in a histogram interval is given by the total length of cells in the histogram

interval divided by the number of cells in the interval. As we have an initial ordering of the

cells and each cell length at steady state we can now readily determine the steady state cell

boundary positions. Returning to Equation (2A.1.1), with a single spring per cell, at steady

state and the fixed boundary conditions x1 = 0, xN+1 = L, we now know every xi and ki

and we can solve this system of N + 1 nonlinear equations to find each ai, using fsolve in

MATLAB [5]. A simulation is then initiated with these ai. This simulation reaches the steady

state spring stiffness histogram distribution we chose to obtain.
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2A.5 Supplementary Figures

In this section we present the supplementary figures which are referenced in the main text.

Heterogeneous k and homogeneous a. Even though a is homogeneous, the resting cell

length is still a key factor as it determines whether the system is, on average, in extension

or in compression. This is determined by comparing the resting spring length, a(ν)
i , with the

critical value, acrit = L/(mN), which is the average length of a spring. In Figure 3 we consider

a < acrit so that on average cells are in extension. We present other cases, where a = acrit and

a > acrit, in Supplementary Figures S3 and S4. We choose the initial cell stiffness distribution

to be k0(x) = 1 + 0.1[x− (L/2)]2. Figure S3, depicts how the system relaxes to a uniform

density distribution, due to the combination of a = acrit and the cell stiffness heterogeneity, as

the velocity field u tends to zero.

It is notable that even for low m we have excellent agreement between the discrete density

and the continuum density especially at the centre of each spring. However, agreement at the

spring boundaries does not hold as well for low m.

Heterogeneous a. We see similar discrete-continuum agreement when we consider exam-

ples with homogeneous k and heterogeneous a, and heterogeneous k and heterogeneous a,

see Supplementary Figures S5 and S6, respectively. We observe higher cell density in regions

of lower a which agrees with the steady state solution to the coarse-grained model, Equation

(3.2) in the main paper.



CHAPTER 2A. SUPPLEMENTARY MATERIAL 62

0.0 2.5 5.0 7.5 10.0
x

0.00

0.05

0.10

t

0.0 2.5 5.0 7.5 10.0

0

5

10

15

t

0.0 2.5 5.0 7.5 10.0

0

5

10

15

t
0.0 2.5 5.0 7.5 10.0
0

1

2

3

4

k

0.0 2.5 5.0 7.5 10.0
0

1

2

3

4
k

0.0 2.5 5.0 7.5 10.0
0

1

2

3

4

k
0.0 2.5 5.0 7.5 10.0
0

1

2

3

q

0.0 2.5 5.0 7.5 10.0
0

1

2

3

q

0.0 2.5 5.0 7.5 10.0
0

1

2

3

q

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

t=0.00

t=2.50

t=15.00

q k

1.5

2.0

2.5

3.0

0.6

0.8

1.0

1.2

1.4

0.0 2.5 5.0 7.5 10.0
x

-20

-10

0

10

20

u

-5

0

5

(i) (j)u

Figure 2A.3: Results for heterogeneous cell stiffness and homogeneous cell spring length for cells in
extension, with N = 10, k0(x) = 1 + 0.1(x− 5)2, and a0(x) = 1. (a,b) Characteristic diagram for spring
boundary position evolution for 0.00 ≤ t ≤ 16.25 with m = 4 so that every fourth trajectory represents a
cell boundary. Colour denotes (a) cell density, (b) cell stiffness. In (a,b) black lines and dots represent
times for snapshots in (c-h). (c,e,g) Cell density snapshots at t = 0.00, 2.50, 15.00. (d,f,h) Cell stiffness
snapshots at t = 0.00, 2.50, 15.00. In (c-h) lines display results from m = 1 (blue), 2 (red), 4 (yellow),
and continuum system (black). (i) Characteristic diagram for spring boundary position evolution for
0.00 ≤ t ≤ 0.10. Colour denotes velocity. (j) Velocity snapshots at t = 0.00 (blue), 0.05 (green), 2.50
(yellow), 15.00 (magenta). Dashed/solid line represent solutions from discrete model with m = 4 and
continuum model, respectively.
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Figure 2A.4: Results for heterogeneous cell stiffness and homogeneous resting cell length, for cells
on average in compression, with N = 10, k0(x) = 1 + 0.1(x− 5)2, and a0(x) = 2. (a,b) Characteristic
diagram for spring boundary position evolution for 0.00 ≤ t ≤ 16.25 with m = 4 so that every fourth tra-
jectory represents a cell boundary. Colour denotes (a) cell density, (b) cell stiffness. In (a,b) black lines
and dots represent times for snapshots in (c-h). (c,e,g) Cell density snapshots at t = 0.00, 2.50, 15.00.
(d,f,h) Cell stiffness snapshots at t = 0.00, 2.50, 15.00. In (c-h) lines display results from m = 1 (blue), 2
(red), 4 (yellow), and continuum system (black).
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represent times for snapshots in (c-h). (c,e,g) Cell density snapshots at t = 0.00, 2.50, 15.00. (d,f,h)
Resting cell length snapshots at t = 0.00, 2.50, 15.00. In (c-h) lines display results from N = 10 with
m = 1 (blue), 2 (red), and continuum system (black).
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Figure 2A.6: Results for heterogeneous cell stiffness and heterogeneous resting cell length, with
N = 10, k0(x) = 1 + 0.1(x− 5)2 and a0(x) = 0.05x. (a,b,c) Characteristic diagram for spring boundary
position evolution for 0.00 ≤ t ≤ 16.25 with m = 4 so that every fourth trajectory represents a cell bound-
ary. Colour denotes (a) cell density, (b) cell stiffness, (c) resting cell length. In (a,b,c) black lines and dots
represent times for snapshots in (d-l). (d,g,j) Cell density snapshots at t = 0.00, 1.25, 15.00. (e,h,k) Cell
stiffness snapshots at t = 0.00, 1.25, 15.00. (f,i,l) Resting cell length snapshots at t = 0.00, 1.25, 15.00. In
(d-l) lines display results from m = 1 (blue), 2 (red), 4 (yellow), and continuum system (black).
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3.0 Preamble

An article published in Bulletin of Mathematical Biology

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2020). Mechanical cell competition in het-

erogeneous epithelial tissues. Bulletin of Mathematical Biology. 82:130. doi:10.1007/s11538-

020-00807-x. bioRxiv preprint

This chapter includes Publication 2, addresses objective 2 and research question 2. This

chapter extends the work of Chapter 2, by incorporating cell proliferation and cell death into

the model of Chapter 1. The key results include a discrete model describing mechanical cell

competition in heterogeneous epithelial tissues, a derivation to obtain the corresponding the

continuum model, and the continuum model. Using these new models we examine under what

conditions the discrete and continuum model show good agreement, explore the evolution of

homogeneous tissues and heterogeneous tissues with a cancerous cells competing for space

with healthy cells. We advise why naively adding source/sink terms to a continuum model

without considering the underlying discrete model may lead to incorrect results. Supplemen-

tary material, such as additional results for homogeneous and heterogeneous populations and

numerical methods, associated with publication 2, is presented in Chapter 3A.

https://doi.org/10.1007/s11538-020-00807-x
https://doi.org/10.1007/s11538-020-00807-x
https://www.biorxiv.org/content/10.1101/869495v2
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3.1 Abstract

Mechanical cell competition is important during tissue development, cancer invasion, and tis-

sue ageing. Heterogeneity plays a key role in practical applications since cancer cells can

have different cell stiffness and different proliferation rates than normal cells. To study this phe-

nomenon, we propose a one-dimensional mechanical model of heterogeneous epithelial tissue

dynamics that includes cell-length-dependent proliferation and death mechanisms. Prolifera-

tion and death are incorporated into the discrete model stochastically and arise as source/sink

terms in the corresponding continuum model that we derive. Using the new discrete model and

continuum description, we explore several applications including the evolution of homogeneous

tissues experiencing proliferation and death, and competition in a heterogeneous setting with

a cancerous tissue competing for space with an adjacent normal tissue. This framework allows

us to postulate new mechanisms that explain the ability of cancer cells to outcompete healthy

cells through mechanical differences rather than an intrinsic proliferative advantage. We ad-

vise when the continuum model is beneficial and demonstrate why naively adding source/sink

terms to a continuum model without considering the underlying discrete model may lead to

incorrect results.
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3.2 Introduction

In cell biology, epithelial tissues are continuously experiencing forces and replacing cells,

through cell proliferation and death, to maintain homeostasis. These tissues can be naturally

heterogeneous or heterogeneous due to to cancer development and progression [89, 182].

This heterogeneity is observed at multiple scales, from sub-cellular to cellular to the tissue

scale [227], and can result in cell competition. Cell competition can act as a quality control

mechanism in tissue development or as a defence against precancerous cells, and harness-

ing cell competition has been suggested as a possible approach to enhance both cell-based

cancer and regenerative therapies [184]. Therefore, gaining a greater understanding of the

mechanisms underlying cell competition is very desirable. In mathematical models of cell

competition the classical hypothesis is that cells compete due to differences in their intrinsic

proliferation rates. However, different mechanisms, such as mechanical cell competition, may

play a role [125]. We will explore mechanical cell competition.

In the emerging field of mechanical cell competition, winner cells compress neighbour-

ing cells promoting tissue crowding and regions of higher density, which leads to cell death

[29, 129, 241], while cell proliferation occurs in regions of lower density [82]. In this work, we

focus on mechanical cell competition arising from the coupling of a cell-based model of ep-

ithelial tissue mechanics with cell-length-dependent proliferation and death mechanisms. We

consider mechanical forces to be driven by cell stiffness which is important for cancer pro-

gression [193], cancer detection [182], morphogenesis [66], and wound healing [61]. A grand

challenge in cell biology is to understand how tissue-level outcomes are related to cell-based

mechanisms, especially when experiments are performed by focusing on a single scale, and

many cellular processes occur over multiple overlapping timescales [38, 248]. Therefore, we

apply mathematical modelling with in silico simulations to develop a framework to quantitatively

connect cell-level mechanisms with tissue-level outcomes.

Many mathematical modelling frameworks, including both discrete models and continuum

models, have been used to study cell migration and cell proliferation. In discrete models in-

dividual cell properties and inter-cellular interactions can be prescribed [175, 179]. However,

discrete models often lack macroscopic intuition and can be computationally intensive, espe-

cially with proliferation and death included, which are commonly stochastic and require many

realisations to understand the average behaviour. Continuum models commonly include pro-

liferation and death through source/sink terms and may require constitutive equations to close

the system [14, 21, 78, 129, 144, 154, 189, 202]. In general, continuum models do not make

the underlying cell-level processes clear [75]. However, continuum models can be less com-
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putationally expensive than discrete models and can be analysed with well-established math-

ematical techniques such as stability analysis [17], phase plane analysis and perturbation

techniques [58,123,159].

We are most interested starting with discrete descriptions of individual cell dynamics and

properties and then deriving corresponding continuum models [27,68,147,174,181,235,253]

because this allows us to switch between the two spatial scales and take advantage of both.

Further, this approach is very insightful as it can be used to demonstrate conditions when

continuum models are valid and when they are not valid. Having a continuum model which

is more computationally efficient to solve than the discrete model, and which well-established

mathematical techniques can be applied to, is only beneficial if the continuum model accu-

rately represents the underlying discrete behaviour. In this work, we start with the model of

mechanical relaxation in heterogeneous epithelial tissues from Murphy et al. (2019) (Chapter

2, [157]) and now incorporate cell-length-dependent proliferation and death mechanisms. This

framework allows us to explore mechanical cell competition, which was not previously possible

when considering only homogeneous populations [19,164–167] or two populations without cell

death [136].

This work is structured as follows. In Section 5.3, we present a new discrete mechanical

model that includes cell-length-dependent proliferation and death mechanisms. We then derive

the corresponding novel continuum model that takes the form of a system of coupled nonlinear

partial differential equations with both hyperbolic and parabolic properties. In Section 3.4.1,

we explore our novel model by considering the evolution of a homogeneous tissue where

cells are undergoing both proliferation and death. In Section 3.4.2, we explore mechanical cell

competition in the context of cancer invasion by considering a heterogeneous tissue composed

of both cancerous and normal cells that compete for space. Using the model we explore

whether cancer cells will eventually replace all of the healthy cells or can the cancer cells

coexist with the healthy cells? In Section 3.4.3, we demonstrate the importance of the discrete

to continuum approach.
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3.3 Model formulation

In this section, we focus on how we stochastically implement cell proliferation and death for

heterogeneous cell populations within the discrete mechanical framework and the derivation of

the continuum description.

3.3.1 Discrete model

We start by describing the mechanical model and then include proliferation and death. We

consider a one-dimensional cross-section of an epithelial tissue, and represent it as a one-

dimensional chain of cells, connected at cell boundaries, in a fixed domain of length L. The

cells experience cell-cell interaction forces at their cell boundaries, for example cell-cell adhe-

sion [109] or compressive stresses [231]. For a system of N cells, cell i has left and right cell

boundaries at positions xNi (t), xNi+1(t), respectively. Fixed boundary conditions at x = 0 and

x = L are imposed xN1 (t) = 0 and xNN+1(t) = L. To allow for heterogeneous tissues, each

cell i, which can be thought of here as a mechanical spring, is prescribed with intrinsic cell

properties including a cell stiffness, kNi , and resting cell length, aNi (Figure 3.1a). We assume

cell motion occurs in a viscous environment such that cell boundaries experience a drag force

with mobility coefficient η > 0 (Chapter 2, [67, 147, 157]). In the overdamped regime, where

inertia effects are neglected, the evolution of cell boundary i in a system of N cells is

η
dxNi (t)

dt
= fNi (lNi (t))− fNi−1(lNi−1(t)), i = 2, . . . , N, (3.3.1)

where fNi (li(t)) is the force exerted on cell i−1 by cell i (Chapter 2, [157]). When fNi (li(t)) > 0

cell i contracts and pulls cell i − 1. When fNi (li(t)) < 0 cell i extends and pushes cell i − 1.

This cell-cell interaction force law may be given by, for example, a cubic, Hertz, Lennard-Jones,

or Johnson-Kendall-Roberts law [19, 136, 165]. However, for simplicity, we choose a Hookean

force law,

fNi (lNi (t)) = kNi
[
lNi (t)− aNi

]
, (3.3.2)

where cell i has length lNi (t) = xNi+1(t)− xNi (t) > 0.

We include cell proliferation stochastically, by considering that cell i proliferates with prob-

ability P (lNi (t))dt in the small time interval [t, t + dt), that depends on the current cell length,

lNi (t), and proliferation mechanism P (·) [19,185]. When cell i proliferates we increase the num-

ber of cells by one by introducing a new cell boundary, xN+1
i+1 , at the midpoint of the original cell,
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Figure 3.1: Discrete model schematic for a heterogeneous epithelial tissue with cell proliferation and
death. Cell i in a system ofN cells has left and right cell boundaries xNi (t), xNi+1(t), with xNi (t) < xNi+1(t),
respectively, and is prescribed with a cell stiffness kNi > 0, and a resting cell length aNi ≥ 0. (a) Cell
proliferation. Cell i, coloured green, is selected to proliferate at time t. At time t + dt, the cell has
proliferated with a new cell boundary introduced at the midpoint of the original cell. Cell properties of
the daughter cell are prescribed from the parent cell. (b) Cell death. Cell i, coloured red, is selected to
die at time t. At time t+ dt, the cell is removed and the cell boundaries of cell i at time have coalesced
at midpoint of the original cell. For both proliferation and death cells are re-indexed at time t + dt. (c)
Special case with two adjacent tissues. The left tissue (tissue 1) is coloured red and the right tissue
(tissue 2) is coloured blue. The interface position between the left and right tissues is x = s(t). Each cell
in tissue i has cell stiffnessKi and resting cell lengthAi. Proliferation and death rates remain dependent
on the length of each cell. This could also represent a single tissue with internal heterogeneity.
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Table 3.1: Proliferation and death mechanisms written in terms of cell length, lNi , proliferation parame-
ter, β, and death parameters, γ, ld.

Constant Linear Logistic
P (lNi ) β β lNi β

D(lNi ) γ

{
γ
(
ld − lNi

)
, 0 ≤ lNi ≤ ld

0, ld < lNi

γ

lNi

Figure 3.2: Proliferation and death mechanisms considered in this work. Proliferation rates, P (lNi )
(dashed), and death rates, D(lNi ) (solid), shown as a function of cell length, lNi . Parameters used in this
work: (a) β = 0.01, γ = 0.01, (b) β = 0.07, γ = 0.35, ld = 0.3, (c) β = 0.01, γ = 0.0025.

xN+1
i+1 = (xNi + xNi+1)/2, and relabel indices accordingly (Figure 3.1a). Daughter cells take the

same intrinsic cell properties as the parent cell. Cell death is included similarly to cell prolifera-

tion with a cell-length-dependent death mechanism, D(lNi (t)). In a system of N+1 cells, when

cell i dies, with cell boundaries xN+1
i and xN+1

i+1 , the number of cells is reduced by one. The

two cell boundaries are set to instantly coalesce at the midpoint of the dying cell (Figure 3.1b).

Cell death at the tissue boundaries needs to be considered separately (Supplementary Mate-

rial SM1.2). In this work, we consider constant, linear, and logistic models of proliferation and

death (Table 3.1, Figure 3.2). We solve discrete Equations (3.3.1) together with a stochastic

implementation of proliferation and death numerically (Supplementary Material SM2.1).
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3.3.2 Derivation of continuum model

To understand the mean behaviour of the discrete model we must average over many iden-

tically prepared stochastic realisations. However, this can be computationally intensive, es-

pecially for large N . The corresponding continuum model, which we first present and then

derive, represents the average behaviour and unlike the discrete model the computational time

required to solve the continuum model is independent of N .

The continuum model for the evolution of the cell density, q(x, t), in terms of the continuous

cell-cell interaction force, f(x, t), proliferation rate, P (1/q(x, t)), and death rate, D(1/q(x, t)), is

the conservation of mass equation

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2︸ ︷︷ ︸
mechanical relaxation

+ q(x, t)P

(
1

q(x, t)

)
︸ ︷︷ ︸

proliferation

− q(x, t)D
(

1

q(x, t)

)
︸ ︷︷ ︸

death

,
(3.3.3)

where the continuous cell-cell interaction force which corresponds to Equation (3.3.2) is given

by

f(x, t) = k(x, t)

(
1

q(x, t)
− a(x, t)

)
, (3.3.4)

with cell stiffness, k(x, t), and the resting cell length, a(x, t), also being described by continuous

fields. From Equation (3.3.3), we know that the cell density flux, j(x, t) = q(x, t)u(x, t), is equal

to the spatial gradient of the cell-cell interaction force, (1/η)∂f/∂x. Therefore, the cell velocity,

u(x, t), is related to the cell density and gradient of the cell-cell interaction force through

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
. (3.3.5)

Note that Equation (3.3.5) corresponds to the discrete linear momentum equation in Equation

(3.3.2). Intrinsic mechanical cell properties are constant for each cell and transported by the

motion of cells. The proliferation and death functions, P (·) and D(·), respectively, (Table 3.1)

are evaluated at 1/q(x, t). Depending on the choice of proliferation and death mechanisms we

may have additional intrinsic cellular properties, β(x, t), γ(x, t), and ld(x, t). All intrinsic cellular

properties evolve according to the following transport equation,

∂χ(x, t)

∂t
+ u(x, t)

∂χ(x, t)

∂x
= 0, χ = k, a, β, γ, ld, (3.3.6)

where u(x, t) is the cell velocity. The left hand side of Equation (3.3.6) corresponds to the
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material derivative, expressing the fact that there is no change in cellular properties along cell

trajectories. We solve the system of Equations (3.3.3)-(3.3.6) together with initial conditions

and boundary conditions numerically (Supplementary Material SM2.2).

We now systematically derive Equation (3.3.3). We take care to explicitly state and make

clear all approximations made in this derivation. We incorporate proliferation and then death

into the modelling framework, under the assumption that the two processes are independent.

The previously derived mechanical relaxation term and transport of cellular property equations

(3.3.6) are only briefly discussed here, please refer to Murphy et al. (2019) (Chapter 2, [157])

for full details. For clarity, the derivation is shown for one spring per cell. However, this analysis

can be extended to m > 1 springs per cell which, for sufficiently small N , is a more appropriate

method to define the continuous field functions (Chapter 2, [157], Supplementary Material

SM1.3).

Proliferation

As cell proliferation is included stochastically (Sections 5.3.1, SM2.1), we consider an infinites-

imal time interval [t, t + dt) and condition on the possible proliferation events that could occur

and influence the position of cell boundary i in a system of N cells. Choosing dt sufficiently

small so that at most one proliferation event can occur in [t, t+dt), there are four possibilities: i)

there is no proliferation, in which case the cell boundary position xNi only changes by mechan-

ical relaxation; ii) there is proliferation to the right of cell i− 1; iii) there is proliferation to the left

of cell i− 1; and iv) cell i− 1 proliferates. This leads to the following infinitesimal evolution law

for the position of cell boundary xNi , accounting for cell relabelling when a new cell is added:

xNi (t+ dt) =

[
xNi (t) +

dt

η

{
fNi
(
lNi
)
− fNi−1

(
lNi−1

)}]
× 1 {no proliferation}

+

[
xN−1
i (t) +

dt

η

{
fN−1
i

(
lN−1
i

)
− fN−1

i−1

(
lN−1
i−1

)}]
× 1 {proliferation right of cell i− 1}

+

[
xN−1
i−1 (t) +

dt

η

{
fN−1
i−1

(
lN−1
i−1

)
− fNi−2

(
lN−1
i−2

)}]
× 1 {proliferation left of cell i− 1}

+

[
xN−1
i (t) + xN−1

i−1 (t)

2
+

dt

2η

{
fN−1
i

(
lN−1
i

)
− fNi−2

(
lN−1
i−2

)}]
× 1 {proliferation of cell i− 1} .

(3.3.7)
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Each term in square brackets is the resulting force from neighbouring cells due to mechanical

relaxation, given by Equations (3.3.1), for each potential event. In addition, we include Boolean

random variables expressed as indicator functions, 1 {·}, defined as

1{event} =


1, if event occurs in [t, t+ dt),

0, otherwise,
(3.3.8)

whose expectations in the context of Equation (3.3.7) can be interpreted as proliferation prob-

abilities. For a system of N cells, where dt is sufficiently small, these proliferation probabilities

are given by

P (no proliferation in [t, t+ dt)) =1− dt

N∑
j=1

P
(
lNj
)
, (3.3.9a)

P (proliferation to the right of cell i− 1 in [t, t+ dt)) = dt
N∑
j=i

P
(
lNj
)
, (3.3.9b)

P (proliferation to the left of cell i− 1 in [t, t+ dt)) = dt
i−2∑
j=1

P
(
lNj
)
, (3.3.9c)

P (proliferation of cell i− 1 in [t, t+ dt)) = dt P
(
lNi−1

)
. (3.3.9d)

Taking a statistical expectation, denoted 〈·〉, of Equation (3.3.7), 〈xNi (t)〉 now represents the ex-

pected position of cell boundary i at time t in a system ofN cells. We use the proliferation prob-

abilities with the following simplifying assumptions: i)
〈
xNi (t) 1 {event}

〉
=
〈
xNi (t)

〉
〈1 {event}〉,

namely independence of the position of the cell boundary in space and proliferation propen-

sity, and a mean-field approximation as proliferation propensities depend on cell length; ii)〈
fi(l

N
i (t)) 1 {event}

〉
=
〈
fi(l

N
i (t))

〉
〈1 {event}〉, namely independence of the force and the

propensity to proliferate, and a mean-field approximation as force depends on cell length;

iii) a statistical mean-field approximation for force, 〈fNj (lNj )〉 = fNj

(
〈lNj 〉

)
, and proliferation

propensities, 〈P (lNj )〉 = P
(
〈lNj 〉

)
. For simplicity we now drop the 〈·〉 notation. Then,

xNi (t+ dt)− xNi (t)

dt
=

1

η

[
fNi
(
lNi
)
− fNi−1

(
lNi−1

)]
− xNi (t)

N∑
j=1

P
(
lNj
)

+ xN−1
i (t)

N−1∑
j=i

P
(
lN−1
j

)

+ xN−1
i−1 (t)

i−2∑
j=1

P
(
lN−1
j

)
+

(
xN−1
i (t) + xN−1

i−1 (t)

2

)
P
(
lN−1
i−1

)
+O (dt) .

(3.3.10)
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We also assume: iv) the total propensity to proliferate is not significantly changed due to single

a proliferation event,
∑N−1

j=1 P
(
lN−1
j

)
dt =

∑N
j=1 P

(
lNj

)
dt+O(dt2, N−1); v) a single prolifera-

tion event does not significantly alter the position of a cell boundary, xN−1
i (t) = xNi (t) +O(dt)

(Figure 3.1). As we will show, assumptions iv) and v) are good approximations for large N and

allow us to combine summations. Then, assuming vi) 〈xNi (t)〉 is a continuous function of time,

we rearrange and take the limit dt→ 0. For the proliferation terms we replace the cell length

with the discrete cell density qNi = 1/lNi to obtain

dxNi
dt

=
1

η

[
fNi
(
lNi
)
− fNi−1

(
lNi−1

)]
−
(

1

qNi−1(t)

) i−2∑
j=1

P

(
1

qNj (t)

)
+

1

2
P

(
1

qNi−1(t)

) . (3.3.11)

Equation (3.3.11) is only valid for the time interval [t, t + dt) under the assumptions iv) and v)

above.

Thus far, we have extended the discrete model with mechanical relaxation to include the

effects of cell proliferation. However, the statistically averaged model still retains information

about discrete cell entities. We thus average over space to define a continuum cell density.

Following Murphy et al. (2019) (Chapter 2, [157]), we introduce the microscopic density of

cells,

q̂(x, t) =

N∑
i=1

δ
(
x− xNi (t)

)
, (3.3.12)

where δ is the Dirac delta function (Evans and Morriss 2008, Lighthill 1958). We define a

local spatial average over a length scale δx, denoted 〈·〉δx, such that ai � δx � L, which is

sufficiently large to capture local heterogeneities for cellular properties that are constant during

cell motion, including k and a, but sufficiently small to define continuous properties across L.

The continuous cell density function, q(x, t), is thus defined as

q(x, t) = 〈q̂(x, t)〉δx =
1

2δx

∫ x+δx

x−δx
q̂(y, t) dy. (3.3.13)

Differentiating Equation (3.3.13) with respect to time gives

∂q(x, t)

∂t
= − ∂

∂x

〈
N∑
i=1

δ
(
x− xNi (t)

) dxNi
dt

〉
δx

, (3.3.14)

where we use properties of the Dirac delta distribution (Evans and Morriss 2008, Lighthill 1958,
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Supplementary Material Equations S.15-S.17) and interchange the derivative with the spatial

average as δx is small. Consistent with assumptions iv)-v) above, the sum over the microscopic

densities can be considered to be fixed over N cells in Equation (3.3.14) within the small time

interval [t, t+ dt).

On the right hand side of Equation (3.3.11), the first two terms involving fNi and fNi−1 cor-

respond to a mechanical contribution. This contribution is unchanged compared to Murphy

et al. (2019) (Chapter 2, [157]) and, when substituted into Equation (3.3.14), it gives rise to

the mechanical relaxation term on the right-hand side of continuum model, Equation (3.3.3)

(Supplementary Material SM1.4). We now focus only on the contribution due to proliferation

determined by substituting the proliferation terms of Equation (3.3.11) into Equation (3.3.14),

giving a contribution which we denote ∂q(x, t)/∂t|P ,

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

〈
N∑
i=1

δ
(
x− xNi (t)

) 1

qNi−1(t)

 i−2∑
j=1

P

(
1

qNj (t)

)
+

1

2
P

(
1

qNi−1(t)

)〉
δx

. (3.3.15)

Now, assuming vii) that the spatial average interval is sufficiently far from the tissue boundary,

i.e. i� 1, we make the following approximation:

i−2∑
j=1

P

(
1

qNj

)
+

1

2
P

(
1

qNi−1

)
≈

i−1∑
j=1

P

(
1

qNj

)
. (3.3.16)

To switch the dependence on the cell index to cell position, we multiply each term indexed by

j in the sum on the right hand side of Equation (3.3.16) by 1 = ljqj . Then, relating the discrete

cell density to the continuous density through qNj = q(xNj (t), t), gives

i−1∑
j=1

q(xNj (t), t)P

(
1

q(xNj (t), t)

)
lj . (3.3.17)

We discretise the spatial domain x1 ≤ x ≤ xi−1 with a uniform mesh with nodes ys, s =

1, 2, . . . , S, where y1 = x1, yS = xi−1, and ys−ys−1 = ∆y � lj . Then, evaluating the continuous

density at each node position, ys, we interpret Equation (3.3.17) as the following Riemann sum

S∑
s=1

q(ys, t)P

(
1

q(ys, t)

)
∆y =

∫ xNi

0
q (y, t)P

(
1

q(y, t)

)
dy, (3.3.18)

where the integral on the right hand side is obtained by taking the limit ∆y → 0. Substituting
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Equation (3.3.18) into Equation (3.3.15) gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

〈
N∑
i=1

δ
(
x− xNi (t)

)( 1

qNi−1

)[∫ xNi

0
q (y, t)P

(
1

q(y, t)

)
dy

]〉
δx

. (3.3.19)

Calculating the spatial average, which only includes contributions from within the spatial aver-

age interval due to the Dirac delta functions, gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

(( n

2δx

) 1

n

n∑
r=1

(
1

qNr−1

)[∫ xNr

0
q (y, t)P

(
1

q(y, t)

)
dy

])
, (3.3.20)

where the index r labels the n cell boundaries contained within the spatial average interval

(x − δx, x + δx). Since ai � δx � L and n � 1 we have qNr = q(xNr (t), t) ≈ q(x, t) for all r,

which is now independent of r. Similarly, xNr ≈ x for all r, where x is the centre of the spatial

average interval. This gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

(( n

2δx

) 1

q(x, t)

∫ x

0
q (y, t)P

(
1

q(y, t)

)
dy

)
. (3.3.21)

As n/(2δx) = q(x, t) in this spatial average interval, Equation (3.3.21) simplifies to

∂q(x, t)

∂t

∣∣∣∣
P

= q (x, t)P

(
1

q(x, t)

)
. (3.3.22)

At this point, we see that all explicit references to the total number of cells, N(t), vanish.

This allows the validity of the derivation, initially restricted to the time interval [t, t + dt), to be

extended to arbitrary times. As N(t) =
∫ L

0 q(x, t) dx, the change in the total cell number with

time due to proliferation is accounted for through the source term written in Equation (3.3.22).

We also stated assumption vii) that held true when sufficiently far from the tissue boundary but

we find that this works at the boundary also (Sections 3.4.1, 3.4.2). Equation (3.3.22) shows

proliferation arises as a single source term consistent with usual continuum-based formulations

of proliferation whereas in Equation (85) of Baker et al. (2019) [19] proliferation arises as this

term with an additional contribution.
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Death

The derivation of the cell death sink term follows similarly to that of the cell proliferation source

term. We again consider an infinitesimally small time interval [t, t + dt), so that at most one

cell death event can occur in [t, t + dt), and condition on cell death events to understand all

possible events that occur and influence cell boundary i at t+ dt. This gives

xNi (t+ dt) =

[
xNi (t) +

dt

η

{
fNi
(
lNi
)
− fNi−1

(
lNi−1

)}]
× 1 {no death}

+

[
xN+1
i (t) +

dt

η

{
fN+1
i

(
lN+1
i

)
− fN+1

i−1

(
lN+1
i−1

)}]
× 1 {death right of cell i}

+

[
xN+1
i+1 (t) +

dt

η

{
fN+1
i+1

(
lN+1
i+1

)
− fN+1

i

(
lN+1
i

)}]
× 1 {death left of cell i}

+

[
xN+1
i (t) + xN+1

i+1 (t)

2
+

dt

2η

{
fN+1
i+1

(
lN+1
i+1

)
− fN+1

i−1

(
lN+1
i−1

)}]
× 1 {death of cell i} .

(3.3.23)

The cell death probabilities for Equation (3.3.23) for a system of N cells are given by

P (no death in [t, t+ dt)) = 1− dt
N∑
j=1

D
(
lNj
)
, (3.3.24a)

P (death to the right of cell i in [t, t+ dt)) = dt

N∑
j=i

D
(
lNj
)
, (3.3.24b)

P (death to the left of cell i in [t, t+ dt)) = dt

i−2∑
j=1

D
(
lNj
)
, (3.3.24c)

P (death of cell i in [t, t+ dt)) = dt D
(
lNi
)
. (3.3.24d)

Proceeding similarly to the proliferation derivation, we obtain

xNi (t+ dt)− xNi (t)

dt
=

1

η

[
fNi
(
lNi
)
− fNi−1

(
lNi−1

)]
− xNi (t)

N∑
j=1

D
(
lNj
)

+ xN+1
i (t)

N+1∑
j=i+1

D
(
lN+1
j

)

+ xN+1
i+1 (t)

i−1∑
j=1

D
(
lN+1
j

)
+

(
xN+1
i (t) + xN+1

i+1 (t)

2

)
D
(
lN+1
i

)
+O (dt) .

(3.3.25)
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Then, following the same approach as the proliferation derivation, we arrive at the sink term in

Equation (3.3.3) for cell death, −q(x, t)D(1/q(x, t)).

Cell properties

Each cell is prescribed with intrinsic mechanical, proliferation, and death properties which are

taken to be constant for each cell throughout the simulation. For mechanical cell properties,

which include cell stiffness and resting cell length, we have the relationships χ(xNi (t), t) = χi

for χ = k, a. Similar relationships can be defined for the proliferation and death cell proper-

ties, β, γ, ld. Differentiating these equations with respect to time we obtain Equations (3.3.6)

(Chapter 2, [157]).
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3.4 Numerical results

In this section, we first explore the evolution of a homogeneous tissue with different proliferation

and death mechanisms and then explore mechanical cell competition for a heterogeneous

tissue. To conclude we demonstrate the importance of the discrete to continuum approach

through a series of problems where we compare the averaged discrete data with solutions of

the corresponding continuum equations.

3.4.1 A homogeneous tissue

The simplest case to consider first is a homogeneous tissue composed of a population of

identical cells. We explore three different proliferation and death mechanisms: constant, linear,

and logistic (Table 3.1, Figure 3.2). For each mechanism we explore proliferation only, death

only, and proliferation with death. We choose cell proliferation and death parameters (Figure

3.2) so that we can compare results fairly. We first choose the parameters for the proliferation

mechanism so that, in the absence of cell death, a tissue with N(0) = 40 evolves to have, on

average, N(400) = 100 (Figures 3.3(m), 3.4(m), S4(m)). Parameters for the death mechanisms

were then subsequently chosen so that when proliferation and death are both included the total

cell number stabilises at 40 cells for t > 0, which allows the standard deviations of N(t) to be

compared fairly (Figures 3.3(n), 3.4(n), S4(n).

In all simulations we set L = 10 and η = 1, use a Gaussian initial density centred at x = L/2

with variance three and scaled to haveN(0) = 40. We set k = 10, so that mechanical relaxation

is fast in comparison to the proliferation and death [19]. For individual realisations this results in

uniform densities except for short-time transient behaviour following a cell proliferation or death

event (Figures 3.3a-c, 3.4a-c, S4a-c). Since epithelial cells in a tissue are in tension [228], we

set a = 0 for simplicity. Setting a > 0 gives qualitatively similar results as long as cells remain

in tension throughout the simulation.

For individual discrete realisations, cell proliferation causes a localised force imbalance fol-

lowed by fast mechanical relaxation towards mechanical equilibrium and an overall increase in

density (Figures 3.3a, 3.4a,S5a). Similarly, cell death results in a decrease in density followed

by fast mechanical relaxation and an overall decrease in density (Figures 3.3b, 3.4b, S5b).

With proliferation and death, cell boundaries are repeatedly introduced and removed, and the

overall density remains, on average, constant (Figures 3.3c, 3.4c, S5c).

We observe excellent agreement when we compare the mean of many identically prepared

discrete realisations and the corresponding solutions of the continuum model for both density
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Figure 3.3: Homogeneous population with constant proliferation and death mechanisms. Proliferation
only, death only, and proliferation with death shown in the left, middle and right columns, respectively.
(a)-(c) Single realisations of cell boundary characteristics for 0 ≤ t ≤ 100. (d)-(f), (g)-(i), (j)-(l) Density
snapshots at times t = 0, 25, 75, respectively. (m)-(o) Total cell number. The average and standard
deviation (blue error bars) of 2000 discrete simulations are compared to solution of continuum model
(green).
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Figure 3.4: Homogeneous population with linear proliferation and death mechanisms. Proliferation
only, death only, and proliferation with death shown in the left, middle and right columns, respectively.
(a)-(c) Single realisations of cell boundary characteristics for 0 ≤ t ≤ 100. (d)-(f), (g)-(i), (j)-(l) Density
snapshots at times t = 0, 25, 75, respectively. (m)-(o) Total cell number. The average and standard
deviation (blue error bars) of 2000 discrete simulations are compared to solution of continuum model
(green).
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snapshots and total cell number (Figures 3.3d-o, 3.4d-o, S5d-o).

We note that the continuum model does not always provide a good match with an indi-

vidual realization of the discrete model. For example, for constant proliferation and constant

death with equal rates, every discrete realization will eventually become extinct (Supplemen-

tary Material SM3.1) as proliferation and death are independent of mechanical relaxation. This

is expected as the total cell number is a linear birth-death process (Ross 1996) where the net

proliferation rate is always equal to zero (Figure S4). As a consequence, the standard deviation

of the total cell number increases with time (Figures 3.3o). When cell proliferation and death

are cell-length-dependent there is closer agreement between the continuum model and single

realisations. The net proliferation rate adjusts, due to changes in the number of cells and their

lengths, to stabilise the population at its equilibrium value (Figure S4). Therefore extinction

is extremely unlikely and the standard deviation of averaged discrete realisations is smaller

(Figures 3.4o, S5o).
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3.4.2 Mechanical cell competition

How tissues compete with each other for space is of great interest with many open biological

questions being pursued in the experimental cell biology literature [29,129,232]. For example,

in cancer invasion in an epithelial tissue a key question is whether cancer cells will eventually

replace the entire healthy tissue or can the cancer cells coexist with the healthy cells? We

consider this question by simulating a heterogeneous tissue composed of two populations,

cancer cells adjacent to healthy cells (Figure 3.1c). Biologically, it is a hallmark of cancer cells

that they are more proliferative and resistant to death than healthy cells [90]. In existing models

the standard procedure would be to include these hallmarks as modelling assumptions and not

consider the role of mechanical relaxation. However, we will now show this assumption is not

necessary. We find that mechanical differences are sufficient for these hallmarks to arise and

for cancer cells to outcompete healthy cells. We prescribe cancer and healthy cells the same

proliferation and death mechanisms and parameters. We ask a further key question, how

does mechanical relaxation alone compare to mechanical relaxation with proliferation, and to

mechanical relaxation with proliferation and death?

In all scenarios, the left tissue (tissue 1) is coloured red to represent cancer cells and the

right tissue (tissue 2) is coloured blue to represent healthy cells (Figure 3.1c). Each tissue

starts with 20 cells. We assume cancer cells have lower stiffness than healthy cells (Lekka

2016) so we set cells in tissue 1 and 2 with cell stiffnesses K1 = 10 and K2 = 20, respectively.

Again, for simplicity and to represent that cells in an epithelial tissue are understood to be in

tension [228], we set a = 0.

With only mechanical relaxation the interface position, s(t), relaxes to the long-time inter-

face position, S = limt→∞ s(t) = 6.66 (Chapter 2, [157]). In this scenario, the cancer and

healthy cells coexist. However, the assumption of mechanical relaxation alone is only realistic

over a short timescale where proliferation and death are negligible. When we include prolifera-

tion and death below, we use this long-time solution as the initial condition. As the mechanical

relaxation rate is faster than the proliferation and death rates, using this initial condition only

neglects initial short-time transient behaviour and does not significantly impact the long-time

solution.

For mechanical relaxation with proliferation (Figure 3.5), we prescribe the linear prolifera-

tion mechanism for both the cancer and healthy cells with the same parameters. As cancer

cells have lower cell stiffness than healthy cells, the cancer cells are always longer than the

healthy cells (Supplementary Material SM4.1) except for the short transients after proliferation

events where the cells have yet to mechanically relax. Initially, the cancer cells, with length 1/3,
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Figure 3.5: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation only. (a),(b) A single realization of cell boundary characteristics for
0 ≤ t ≤ 200. Colouring in (a),(b) represents cell density and cell stiffness, respectively. (c)-(d), (e)-(f),
(g)-(h) Density and cell stiffness snapshots, left and right, respectively, at times t = 0, 25, 200, respec-
tively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan) for the
discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows the edge of the
domain. The average and standard deviation (blue error bar) of 2000 discrete simulations are compared
to the solution of the continuum model (green).
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are double the length of healthy cells. Referring to Figure 3.2b we see that the difference in

cell lengths corresponds to cancer cells being more likely to proliferate than the healthy cells.

Therefore, the cancer cells proliferate more than the healthy cells not because they were set to

have advantageous intrinsic proliferation or death properties through a modelling assumption,

but simply due to the coupling of mechanical relaxation with the length-dependent prolifera-

tion mechanism. With each proliferation event all cells become smaller, with the healthy cells

remaining smaller than the cancer cells. Here we have coexistence but, as there is always a

non-zero probability of proliferation and no cell death, all cells will eventually become unrealis-

tically small and this happens first for healthy cells. In the absence of cell death, changing the

proliferation mechanism will still result in coexistence.

For mechanical relaxation with proliferation and death (Figure 3A.13) a cell is more likely to

die when it is smaller (Figure 3.2b). As we have observed for mechanical relaxation with pro-

liferation, the healthy cells are smaller first, due to their higher relative stiffness, and therefore

are more likely to die first. Once all of the healthy cells have died we have a homogeneous

population of cancerous cells (Section 3.4.1). Importantly, we find that the cancerous cells, de-

spite having identical proliferation and death mechanisms, are the winner cells of mechanical

cell competition; they outcompete the healthy cells and take over the domain purely as a result

of having lower cell stiffness. These results are robust to changes to the initial ratio of healthy

cells to cancer cells (Figures S8, S9) and to the ratio of stiffness between healthy and cancer

cells, provided cancer cells have lower stiffness than healthy cells (Figure S10).

Similar results regarding cancer invasion are found when considering the logistic mecha-

nisms with both proliferation and death (Supplementary Material SM4.3). In contrast, for the

constant proliferation and death mechanisms, where the proliferation and death mechanisms

are both independent of the cell length and therefore independent of mechanical relaxation, to

observe cancer cells invading the full domain we would have to prescribe the cancer cells to

be more proliferative and resistant to death than the healthy cells.
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Figure 3.6: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. First row shows a single realization of cell boundary charac-
teristics for 0 ≤ t ≤ 200. Colouring in (a),(b) represent cell density and cell stiffness, respectively. (c)-(d),
(e)-(f), (g)-(h) Density and cell stiffness snapshots, left and right, respectively, at times t = 0, 25, 50, re-
spectively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan) for the
discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows the edge of the
domain. The average and standard deviation (blue error bar) of 2000 discrete simulations are compared
to the solution of the continuum model (green).
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3.4.3 Importance of the discrete to continuum approach

The discrete to continuum approach is important as it provides a principled means to determine

how cell-level properties scale to the macroscale. Further, the approach provides conditions

for whether or not the continuum model is beneficial, as we now explore.

In previous sections we choose proliferation and death mechanisms with parameters which

lead to a good match between the appropriately averaged data from repeated discrete realisa-

tions and the solution of the corresponding continuum model. In Section 3.4.1, we demonstrate

that individual realisations of the discrete model can go extinct while the continuum model does

not. This provides a first indication that the continuum model does not always capture all rele-

vant information from the underlying discrete model. We now demonstrate that if the approxi-

mations outlined in the derivation of the continuum model in Section 3.3.2 are not satisfied then

the continuum approximation is not always satisfactory, and in such cases the discrete model

should be used.

As an illustrative example we consider a proliferation mechanism which varies rapidly with

cell length. For simplicity we consider the following piecewise cell-length-dependent prolifera-

tion mechanism

P (li) =


0, 0 ≤ li < lp,

0.01, li ≥ lp,
(3.4.1)

where we set the proliferation threshold to be lp = 0.2. As before, N(0) = 40 but we now

choose a constant initial density condition so li = 0.25 for each cell. Therefore, in the discrete

model, each cell is initially able to proliferate. When the first cell proliferates it divides into

two equally sized daughter cells with lengths li = 0.125. With fast mechanical relaxation, i.e.

sufficiently large k, all 41 cells relax to equal size, li = 0.244, before the next proliferation

event. This repeats until li < lp for each cell i when proliferation stops (Figure 3.7d,f,h). This

results in a tissue with 50 cells (Figure 3.7i,j), which is consistent with the continuum model

where the density increases at the same rate everywhere in the tissue until reaching N =

50 (Figure 3.7j, S6b,d,f). As the initial density condition is uniform the continuum solution

holds true for any k. However, the behaviour of the discrete model for very slow mechanical

relaxation, i.e. sufficiently small k, is very different. Proliferation occurs faster than mechanical

relaxation so each of the initial 40 cells can proliferate, resulting in 80 cells (Figure 3.7c,e,g,i,

S6a,c,e). It is clear that the continuum model does not accurately describe this problem and

so we conclude that the discrete model should be used in this case. Increasing k results in an
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improved agreement between the discrete and continuum models (Figure S7).

This example is important. The mismatch between the continuum and discrete results for

this case remains even if we consider similar problems with larger numbers of cells, so simply

increasing N(0) does not alleviate the issue. We do observe that increasing the mechanical

relaxation rate, by increasing k, does provide a better match. However, in this piecewise

proliferation mechanism example we require very high values of k, for example k = 1000, for a

good match. Results in previous sections with excellent agreement are generated using k = 10.

Revisiting the mechanical cell competition example and reducing to k = 0.0001 still provides

a reasonable match (Figure S13). This is because the rates involved in the proliferation and

death mechanisms are smoother and slowly varying with respect to cell-length.

The results in Figure 3.7 may be surprising from the perspective of continuum mechanics.

A common approach in continuum mechanics [14,78,154] is to start with conservation of mass

and linear momentum and invoke constitutive laws. To derive our model using this approach

one could start with the conservation of mass equation and then heuristically add source and

sink terms to represent proliferation and cell death to give

∂q(x, t)

∂t
+

∂

∂x
(q(x, t)u(x, t)) = q(x, t)P

(
1

q(x, t)

)
− q(x, t)D

(
1

q(x, t)

)
. (3.4.2)

The continuous analogue of the discrete conservation of momentum Equation (3.3.1) could be

written by expanding the discrete cell-cell interaction force law with respect to cell-length in a

Taylor series expansion to obtain

ηu(x, t) =
1

q(x, t)

∂f(x, t)

∂x
. (3.4.3)

Equations (3.4.2) and (3.4.3) agree with Equations (3.3.3)-(3.3.6) derived earlier using a sys-

tematic coarse-graining approach. However, in the common continuum mechanics approach

we would not have any opportunity to compare solutions of these continuum models with any

underlying discrete description. This simple approach does not give any explicit indication of

the underlying approximations inherent in the continuum model nor does it inform us when

the continuum model may be a poor representation of the biology (Figure 3.7). Especially in

biological contexts where cell numbers are large but local fluctuations can play an important

role, we prefer to adopt the approach of starting with a biologically motivated discrete model

and carefully derive the associated continuum limit, since this approach explicitly highlights the

underlying assumptions inherent in the continuum model and provides us with a way of testing

the accuracy of such assumptions.
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Figure 3.7: Homogeneous population with rapidly varying proliferation mechanisms. With slow me-
chanical relaxation, k = 0.0001, and faster mechanical relaxation, k = 1000, shown in left and right
columns, respectively. (a)-(b) Single realisations of cell boundary characteristics for 0 ≤ t ≤ 100. (c)-
(h) Cell length distributions against proliferation mechanism for times t = 0, 50, 100 where one discrete
realisation (blue) is compared against continuum model (green). (i)-(j) Total cell number where the av-
erage and standard deviation (blue error bars) of 2000 discrete simulations are compared to solution of
continuum model (green).
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3.5 Conclusion

In this work, we present a new one-dimensional cell-based model of heterogeneous epithelial

tissue mechanics that includes cell proliferation and death. The main focus is to determine

the corresponding continuum model which is a novel coupled system of nonlinear partial dif-

ferential equations. The cell density equation is a parabolic partial differential equation while

the cell property equations are hyperbolic partial differential equations. In deriving the con-

tinuum model, the discrete mechanisms and assumptions that underpin the continuum model

have been made explicit by presenting the details of the coarse-graining derivation. Assump-

tions that relate to mean-field approximations and statistical independence of quantities are

normally implicitly assumed in continuum models. By specifying the details of the derivation,

and all assumptions required, our work provides insight into situations when these assump-

tions hold, as well as giving insight into when these assumptions fail to hold, such as when

the number of cells, N(t), is not sufficiently large, when cell properties vary rapidly in space,

when mechanical relaxation is slow relative to rate of proliferation, or with proliferation and

death mechanisms which vary rapidly with respect to cell-length. Under these conditions we

recommend that the discrete description is more appropriate than the approximate contin-

uum description. Further, we stress the limitations of developing continuum models by simply

adding source and sink terms to an existing model without considering the underlying discrete

model in complex biological systems.

By coupling mechanics with proliferation and death we are able to explore biological sce-

narios that could not be described in previous modelling frameworks. Specifically we can focus

on mechanical cell competition driven by variations in cell stiffness and resting cell length. By

choosing mechanical relaxation rates sufficiently fast relative to proliferation rates we observe

good agreement between the average of many identically prepared stochastic realisations of

the discrete model and the corresponding solutions of the continuum model. The quality of

agreement holds even when our simulations only consider 40 cells and L = 10 which is an

extremely small number in comparison to the number of cells in an epithelial tissue. Further,

assuming one cell is approximately 10µm in length [68,73] then setting L = 10 corresponds to

a tissue length of approximately 0.4mm which is a biologically relevant length scale for appli-

cations such as wound healing. A continuum model is beneficial as we now have a tissue-level

understanding of the mechanisms encoded in the discrete model and the time to solve the con-

tinuum model is independent of N(t). The discrete model remains beneficial and can provide

additional information. For example, the average of many discrete realisations can match the

continuum model but every discrete realization could go extinct which is not observed in the
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continuum model.

We explore mechanical cell competition applied to cancer invasion by considering cancer

cells adjacent to healthy cells which compete for space. Interestingly, when we only allow can-

cer cells and healthy cells to differ in their cell stiffnesses, as a result of mechanical coupling,

we observe that the cancer cells have more opportunities to proliferate and are less likely to

die than healthy cells. We can then identify the cancer cells, as a result of the property of lower

cell stiffness, as being the winner cells which invade the full domain. Cell stiffness and cell size

may therefore be important factors to include when interpreting proliferation and death rates in

experimental data. This analysis would not be possible using other existing models.

In all simulations we set a = 0 to model cells being in tension [228]. Setting a > 0

gives qualitatively similar results for homogeneous and heterogeneous populations as long

as cells remain in tension throughout the simulation. This modelling framework is well-suited

to be extended to cases where cells may also become compressed, for example in a tumour

spheroid [53]. The model is well-suited to also study other observations of melanoma tumour

spheroids such as subpopulations with differing proliferation rates located in different regions of

the tumour, cells switching between these subpopulations, and the role of oxygen and nutrient

concentrations [86,239].

Many interesting extensions to this work are possible. Mathematically, the extent to which

the continuum-limit holds with a free boundary is not yet clear (explored in Chapters 4 and 5). A

free boundary also allows us to consider tissue growth [198] and shrinkage in mechanically less

constrained environments, such as in developmental biology. Further, explicitly incorporating

additional biological mechanisms that regulate cell size [101, 256, 257] and the evolution of

intrinsic cell properties [89] would be both mathematically interesting and biologically relevant.

In addition, while some features of cell ageing are implicit in the model, for example initially after

a proliferation event daughter cells are less likely to proliferate than the parent cell with cell-

length-dependent proliferation mechanisms, it would be of interest to explicitly incorporate the

cell cycle and associated cell ageing processes such as growth in the resting cell length [147].

The theoretical foundations presented here for building a discrete model and constructing the

continuum limit of that discrete model could be used to describe these additional mechanisms

in future analyses (see Chapters 4 and 5 where we include free boundaries).
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3A.1 Model formulation

In Section 2.1 of the main manuscript, we present the discrete model with one spring per cell

and the derivation of the corresponding continuum model. Here, we present the discrete model

with m > 1 springs per cell, see Supplementary Material Section 3A.1.1. This is important to

define the field functions in the continuum model, in particular the mechanical relaxation term,

for sufficiently small N [157] where the size of a cell is no longer small in comparison to the size

of the domain. Proliferation still occurs at a cellular level rather than at a spring level with m > 1

therefore we still require many cells, i.e. ai � δx � L. We also present: the special cases

we need to consider at the boundaries for cell death, see Supplementary Section 3A.1.2; the

derivation of continuum model for proliferation with m > 1 springs per cell, see Supplementary

Material Section 3A.1.3; and in Supplementary Material Section 3A.1.4 highlight key points for

the derivation of the mechanical relaxation term [157].

3A.1.1 Discrete model with m > 1 springs per cell

The model described in the main manuscript is presented by considering each cell to be rep-

resented by a single mechanical spring, m = 1, and tracking the evolution of cell boundaries.

We now replace each cell with m > 1 identical springs (Figure 3A.1a) [157]. We have spring

boundaries at the cell boundaries as before but now we also have spring boundaries internal

to the cell. We now track the evolution of all spring boundaries. In a system of N cells, cell

i has spring boundaries xNi,ν , ν = 1, . . . ,m, where xNi = xNi,1. The spring length is defined as

lNi,ν = xNi,ν − xNi,ν−1 > 0 and is related to cell length through lNi ∼ mlNi,ν as m→∞, and with

equality for allm as t→∞. The mobility coefficient for a cell, η, and mechanical cell properties,

ki and ai, are related to mobility coefficient for a spring boundary, ην , spring stiffness, kNi,ν and

resting spring length, aNi,ν , through the following scalings

ην =
η

m
, kNi,ν = mkNi , aNi,ν =

aNi
m
, (3A.1.1)

The spring boundaries, xNi,ν , evolve according to

ην
dxNi,ν(t)

dt
= fNi,ν − fNi,ν−1, i = 2, . . . , N, ν = 1, 2, . . . ,m,

fNi,ν = kNi,ν
(
lNi,ν − aNi,ν

)
.

(3A.1.2)

We consider proliferation to be a property of a cell rather than a property of springs within a

cell. Specifically, when spring ν in cell i is chosen to proliferate we consider that the whole
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cell proliferates and introduce an additional m springs (Figure 3A.1b). Accordingly, we will

introduce scaled spring proliferation rates. As with m = 1, we introduce the new cell boundary

at the midpoint of original cell before proliferation. However, now we introduce m additional

springs. To do so we equally space 2m springs within the original cell. Similarly, for cell death

we now instantly coalesce the cell boundaries and all internal spring boundaries to the centre

of the dying cell. We have spring proliferation and death laws, Pν and Dν , respectively,

Pν
(
lNi,ν
)

=
P
(
lNi
)

m
, Dν

(
lNi,ν
)

=
D
(
lNi
)

m
. (3A.1.3)

The scalings are chosen such that the cell boundary velocities and proliferation/death rates are

maintained and are independent of m [157].
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Figure 3A.1: (a) Schematic for the discrete model with m springs per cell. Heterogeneous population
with N cells in a fixed domain of length L. Cell i, with a blue border, is prescribed with cell stiffness kNi
and resting cell length aNi . The length of cell i is lNi = xNi+1−xNi . Spring ν in cell i has spring boundaries
xNi,ν , x

N
i,ν+1. Each spring is prescribed with a spring stiffness kNi,ν = mkNi and a resting spring length

aNi,ν = aNi /m. Each spring has spring length lNi,ν = xNi,ν+1 − xNi,ν . The cell and spring boundaries are
shown as discs and hexagons, respectively. (b) Proliferation of cell i, with a green border, in a model
with m springs per cell. The original cell divides into two cells. An additional m equally spaced springs
are introduced. This schematic is presented for even m.
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3A.1.2 Death at boundaries

Cell death at a boundary is a special case of the discrete model which we present here. For

death of the first cell whose left boundary is at x = 0, the first cell is removed and the left

boundary of the second cell is set to x = 0 (Figure 3A.2a). Similarly, for the death of the last

cell whose right boundary is at x = L, the final cell is removed and the right boundary of cell

N − 1 is set to x = L (Figure 3A.2b).

Figure 3A.2: Model schematic for special cases of cell death of (a) first and (b) last cell.
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3A.1.3 Derivation of proliferation with m > 1 springs per cell

In Section 2.2 of the main manuscript, we present the derivation with one spring per cell,m = 1.

Here, for completeness, we rewrite the derivation with m springs per cell. The advantage of

m springs per cell is that we can more appropriately define the continuous field functions, in

particular the mechanical relaxation term for low cell numbers. New text relevant for m springs

per cell is shown in purple. Setting m = 1 in this new derivation recovers the results in the

main manuscript.

Starting from the discrete model described in Section 2.1 but now for m springs per cell

as described in Supplementary Material Section 1.1, we now derive the proliferation source

term in Equation (3). As cell proliferation is included stochastically, we consider an infinitesimal

time interval [t, t + dt) and condition on the possible proliferation events that could occur and

influence the position of spring boundary ν in cell i in a system of N cells. We note that

proliferation is still considered a cell event rather than a spring event. Specifically, we say that

a cell proliferates once any spring in the cell has been chosen to proliferate; this is captured

through the scalings in Equation (3A.1.3).

Choosing dt sufficiently small so that at most one proliferation event can occur in [t, t+ dt)

there are five possibilities: i) either there is no proliferation, in which case the spring boundary

position xi,νN only changes by mechanical relaxation; ii) there is proliferation to the right of cell

i; iii) there is proliferation to the left of cell i−1; iv) cell i−1 proliferates; and v) cell i proliferates.

This leads to the following infinitesimal evolution law for the position of spring boundary ν in
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cell i xNi,ν , accounting for cell relabelling when a new cell is added:

xi,ν
N (t+dt) =

[
xi,ν

N (t) +
dt

η

{
fi,ν

N
(
li,ν

N
)
− fi,ν−1

N
(
li,ν−1

N
)}]

× 1 {no proliferation}

+

[
xi,ν

N−1(t) +
dt

η

{
fi,ν

N−1
(
li,ν

N−1
)
− fi,ν−1

N−1
(
li,ν−1

N−1
)}]

× 1 {proliferation right of cell i}

+

[
xi−1,ν

N−1(t) +
dt

η

{
fi−1,ν

N−1
(
li−1,ν

N−1
)
− fi−1,ν−1

N
(
li−1,ν−1

N−1
)}]

× 1 {proliferation left of cell i− 1}

+

[
xN−1

i−1,(m2 + ν+1
2 )

(t) +
dt

η

{
fi−1,(m2 + ν+1

2 )
N−1

(
lN−1

i−1,(m2 + ν+1
2 )

)
− fi−1,(m2 + ν−1

2 )
N

(
lN−1

i−1,(m2 + ν−1
2 )

)}]
× 1 {proliferation of cell i− 1}

+

[
xN−1

i,( ν+1
2 )

(t) +
dt

η

{
fi+1,( ν+1

2 )
N−1

(
lN−1

i+1,( ν+1
2 )

)
− fi−1,( ν+1

2 )
N

(
lN−1

i−1,( ν+1
2 )

)}]
× 1 {proliferation of cell i} .

(3A.1.4)

The derivation is shown for even m and odd ν for simplicity (Figure 3A.1b). With other choices

of m and ν we obtain slightly different terms for the proliferation of cell i − 1 and i. However,

these choices are not important to the following derivation. Each term in square brackets is

the resulting force from neighbouring cells due to mechanical relaxation, given by Equations

(3A.1.2), for each potential event. In addition, we include Boolean variables expressed as

indicator functions, 1 {·}, defined as

1{event} =


1, if event occurs in [t, t+ dt),

0, otherwise,
(3A.1.5)

whose expectations in the context of Equation (3A.1.4) can be interpreted as proliferation prob-

abilities. For a system of N cells with m springs per cell, where dt is sufficiently small, these
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proliferation probabilities are given by

P (no proliferation in [t, t+ dt)) = 1− dt

N∑
j=1

m∑
ν=1

Pν
(
lj,ν

N
)
, (3A.1.6a)

P (proliferation to the right of cell i in [t, t+ dt)) = dt
N∑

j=i+1

m∑
ν=1

Pν
(
lj,ν

N
)
, (3A.1.6b)

P (proliferation to the left of cell i− 1 in [t, t+ dt)) = dt
i−2∑
j=1

m∑
ν=1

Pν
(
lj,ν

N
)
, (3A.1.6c)

P (proliferation of cell i− 1 in [t, t+ dt)) = dt
m∑
ν=1

Pν
(
li−1,ν

N
)
, (3A.1.6d)

P (proliferation of cell i in [t, t+ dt)) = dt
m∑
ν=1

Pν
(
li,ν

N
)
, (3A.1.6e)

where using the proliferation rate scaling, from Equation (3A.1.3), Equations (3A.1.6) can be

written in terms of the cell proliferation rates,

P (no proliferation in [t, t+ dt)) = 1− dt
N∑
j=1

P
(
lNj
)
, (3A.1.7a)

P (proliferation to the right of cell i in [t, t+ dt)) = dt

N∑
j=i+1

P
(
lNj
)
, (3A.1.7b)

P (proliferation to the left of cell i− 1 in [t, t+ dt)) = dt
i−2∑
j=1

P
(
lNj
)
, (3A.1.7c)

P (proliferation of cell i− 1 in [t, t+ dt)) = dt P
(
lNi−1

)
, (3A.1.7d)

P (proliferation of cell i in [t, t+ dt)) = dt P
(
lNi
)
. (3A.1.7e)

Taking a statistical expectation, denoted 〈·〉, of Equation (3A.1.4), 〈xi,νN (t)〉 now represents

the expected position of spring boundary ν in cell i at time t in a system of N cells. We use the

proliferation probabilities with the following simplifying assumptions: i)
〈
xi,ν

N (t) 1 {event}
〉

=〈
xi,ν

N (t)
〉
〈1 {event}〉, namely independence of the position of the cell boundary in space and

proliferation propensity, and a mean-field approximation as proliferation propensities depend

on spring length; ii)
〈
xi,ν

N (t) fN (lj,ν
N )
〉

=
〈
xi,ν

N (t)
〉 〈
fN (lj,ν

N )
〉
, namely independence of

force and the propensity to proliferate, and a mean-field approximation as force depends on

spring length; iii) a statistical mean-field approximation for force, 〈fN (lj,ν
N )〉 = fN

(
〈lj,νN 〉

)
,

and proliferation terms, 〈P (lNj )〉 = P
(
〈lNj 〉

)
. For simplicity, we now drop the 〈·〉 notation.
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Then,

xi,ν
N (t+ dt)− xi,νN (t)

dt
=

1

η

[
fi,ν

N
(
li,ν

N
)
− fi,ν−1

N
(
li,ν−1

N
)]

− xi,νN (t)
N∑
j=1

P
(
lNj
)

+ xi,ν
N−1(t)

N−1∑
j=i+1

P
(
lN−1
j

)
+ xN−1

i,( ν+1
2 )

(t)P
(
lN−1
i

)

+ xi−1,ν
N−1(t)

i−2∑
j=1

P
(
lN−1
j

)
+ xN−1

i−1,(m2 + ν+1
2 )

(t)P
(
lN−1
i−1

)
+O (dt) .

(3A.1.8)

We also have

xN−1

i,( ν+1
2 )

(t) = xN−1
i,ν (t) +

[
xN−1

i,( ν+1
2 )

(t)− xN−1
i,ν (t)

]
, (3A.1.9)

and we make assumption vii) that we are sufficiently far from the tissue boundary such that the

term in square brackets of Equation (3A.1.9) is negligible in comparison to the first term in the

right hand side. This is consistent with Equation (16) in the derivation with m = 1. Similarly for

the term xN−1

i−1,(m2 + ν+1
2 )

(t). This gives

xi,ν
N (t+ dt)− xi,νN (t)

dt
=

1

η

[
fi,ν

N
(
li,ν

N
)
− fi,ν−1

N
(
li,ν−1

N
)]

− xi,νN (t)

N∑
j=1

P
(
lNj
)

+ xi,ν
N−1(t)

N−1∑
j=i+1

P
(
lN−1
j

)
+ xN−1

i,ν (t)P
(
lN−1
i

)

+ xi−1,ν
N−1(t)

i−2∑
j=1

P
(
lN−1
j

)
+ xN−1

i−1,ν(t)P
(
lN−1
i−1

)
+O (dt)

(3A.1.10)

We also assume: iv) the total propensity to proliferate is not significantly changed due to

a single proliferation event,
∑N−1

j=1 P
(
lN−1
j

)
dt =

∑N
j=1 P

(
lNj

)
dt + O(dt2, 1

N ); v) a single

proliferation event does not significantly alter the position of a cell boundary, xi,νN−1(t) =

xi,ν
N (t) +O(dt). As we will show, assumptions iv) and v) are good approximations for large N

and allow us to combine summations to give

xi,ν
N (t+ dt)− xi,νN (t)

dt
=

1

η

[
fi,ν

N
(
li,ν

N
)
− fi,ν−1

N
(
li,ν−1

N
)]

− xNi,ν(t)

 i−1∑
j=1

P
(
lNj
)+ xNi−1,ν(t)

 i−1∑
j=1

P
(
lNj
)+O

(
dt,N−1

)
.

(3A.1.11)

Then, assuming vi) 〈xi,νN (t)〉 is a continuous function of time, we rearrange and take the limit

dt→ 0. For the proliferation terms we replace the cell length with the discrete cell density
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qNi = 1/lNi to obtain

dxi,ν
N

dt
=fi,ν

N
(
li,ν

N
)
− fi,ν−1

N
(
li,ν−1

N
)

−
(

1

qNi (t)

) i−1∑
j=1

P

(
1

qNj (t)

) . (3A.1.12)

Equation (3A.1.12) is only valid for the time interval [t, t+ dt) under the assumptions iv) and v)

above.

Thus far, we have extended the discrete model with mechanical relaxation to include the

effects of cell proliferation and death. However, the statistically averaged model still retains

information about discrete cell entities. We thus average over space to define a continuum cell

density. Following Murphy et al. (2019) [157], we introduce the microscopic density of cells,

q̂(x, t) =
1

m

N∑
i=1

m∑
ν=1

δ
(
x− xi,νN (t)

)
, (3A.1.13)

where δ is the Dirac delta function (Evans and Morriss 2008, Lighthill 1958). We define a local

spatial average over a length scale δx, denoted 〈·〉δx, such that ai,ν � ai � δx � L, which is

sufficiently large to capture local heterogeneities for cellular properties that are constant during

cell motion, including k and a, but sufficiently small to define continuous properties across L.

The continuous cell density function, q(x, t), is thus defined as

q(x, t) = 〈q̂(x, t)〉δx =
1

2δx

∫ x+δx

x−δx
q̂(y, t) dy. (3A.1.14)

We proceed by differentiating Equation (3A.1.14) with respect to time to obtain

∂q(x, t)

∂t
=

∂

∂t
〈q̂(x, t)〉δx =

〈
∂q̂(x, t)

∂t

〉
δx

(3A.1.15)

From Evans and Morriss (2008), the term inside the spatial average on the right hand side of
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Equation (3A.1.15) can be written as

∂q̂(x, t)

∂t
=

∂

∂t

(
1

m

N∑
i=1

m∑
ν=1

δ
(
x− xi,νN (t)

))
,

=
1

m

N∑
i=1

m∑
ν=1

dxi,ν
dt

∂

∂xi,ν
δ
(
x− xi,νN (t)

)
,

= − 1

m

N∑
i=1

m∑
ν=1

dxi,ν
dt

∂

∂x
δ
(
x− xi,νN (t)

)
,

= − ∂

∂x

(
1

m

N∑
i=1

m∑
ν=1

dxi,ν
dt

δ
(
x− xi,νN (t)

))
,

(3A.1.16)

where we obtain the third line of Equation (3A.1.16) by making use of properties associated

with the Direct delta function (Evans and Morriss 2008, Lighthill 1958). Then substituting Equa-

tion (3A.1.16) into Equation (3A.1.15) gives

∂q(x, t)

∂t
= − ∂

∂x

〈
1

m

N∑
i=1

m∑
ν=1

dxi,ν
dt

δ
(
x− xi,νN (t)

)〉
δx, (3A.1.17)

where on the right hand side, as δx is small, we have interchanged the spatial average and the

derivative with respect to x. We note that the final step using the assumption δx is small can be

shown more formally by explicitly treating the Dirac delta function as a generalised function and

using test functions (Lighthill 1958). Consistent with assumptions 4)-5) above, the sum over

the microscopic densities can be considered to be fixed over N cells in Equation (3A.1.17)

within the small time interval [t, t+ dt).

On the right hand side of Equation (3A.1.12), the first two terms involving f correspond

to a mechanical contribution. This contribution is unchanged compared to Murphy et al.

(2019) [157] and, when substituted into Equation (3A.1.17), it gives rise to the mechanical

relaxation term on the right hand side of the continuum equation (3) (Supplementary Material

3A.1.4). We now focus only on the contribution determined by substituting the proliferation

terms of Equation (3A.1.12) into Equation (3A.1.17), giving a contribution which we denote

∂q(x, t)/∂t|P ,

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

〈
1

m

N∑
i=1

m∑
ν=1

δ
(
x− xi,νN (t)

) 1

qNi−1(t)

 i−1∑
j=1

P

(
1

qNj (t)

)〉
δx. (3A.1.18)

At this point in the derivation for m = 1 we make the assumption that we are sufficiently far

from the tissue boundary. We name this as assumption vii). For m > 1 we have already made

assumption vii) and this is not required again here. To switch the dependence on the cell index
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to cell position, we focus on the sum in square brackets on the right hand side of Equation

(3A.1.18). We multiply each term j by 1 = ljqj . Then relating the discrete cell density to the

continuous density through qNj = q(xNj (t), t) gives

i−1∑
j=1

q(xNj (t), t)P

(
1

q(xNj (t), t)

)
lj . (3A.1.19)

We discretise the spatial domain x1 ≤ x ≤ xi−1 with a uniform mesh with nodes ys, s =

1, 2, . . . , S, where y1 = x1, yS = xi−1, and ys−ys−1 = ∆y � lj . Then, evaluating the continuous

density at each node position, ys, we interpret Equation (3A.1.19) as the following Riemann

sum

S∑
s=1

q(ys, t)P

(
1

q(ys, t)

)
∆y =

∫ xNi

0
q (y, t)P

(
1

q(y, t)

)
dy. (3A.1.20)

where the integral on the right hand side is obtained by taking the limit ∆y → 0. Substituting

Equation (3A.1.20) into Equation (3A.1.18) gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

〈
1

m

N∑
i=1

m∑
ν=1

δ
(
x− xi,νN (t)

)( 1

qNi−1

)[∫ xNi

0
q (y, t)P

(
1

q(y, t)

)
dy

]〉
δx.

(3A.1.21)

Calculating the spatial average, which only includes contributions from within the spatial aver-

age interval due to the Dirac delta functions, gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

(( n

2δx

) 1

n

1

m

n∑
r=1

m∑
ν=1

(
1

qNr−1

)[∫ xNr

0
q (y, t)P

(
1

q(y, t)

)
dy

])
, (3A.1.22)

where the index r labels the n cell boundaries contained within the spatial average interval

(x − δx, x + δx). Equation (3A.1.22) is now independent of m, which is to be expected as

proliferation is considered a cell event rather than a spring event. Simplifying gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

(( n

2δx

) 1

n

n∑
r=1

(
1

qNr−1

)[∫ xNr

0
q (y, t)P

(
1

q(y, t)

)
dy

])
. (3A.1.23)

Since ai � δx� L and n� 1 we have qNr = q(xNr (t), t) = q(x, t) for all r, which is independent

of r. Similarly, xr ≈ x for all r, where x is the centre of the spatial average interval. This gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

(( n

2δx

) 1

q(x, t)

∫ x

0
q (y, t)P

(
1

q(y, t)

)
dy

)
. (3A.1.24)
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As n/(2δx) = q(x, t) in this spatial average interval, Equation (3A.1.24) simplifies to

∂q(x, t)

∂t

∣∣∣∣
P

= q (x, t)P

(
1

q(x, t)

)
. (3A.1.25)

At this point, we see that all explicit references to the total number of cells, N(t), vanish.

This allows the validity of the derivation, initially restricted to the time interval [t, t + dt), to be

extended to arbitrary times. As N(t) =
∫ L

0 q(x, t) dx, the change in the total cell number with

time due to proliferation is accounted for through the source term written in Equation (3A.1.25).

We also stated assumption vii) that held true when sufficiently far from the tissue boundary but

we find that this works at the boundary also (Section 2).
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3A.1.4 Mechanical relaxation

We outline the key steps to derive the mechanical terms, with one spring per cell, and refer the

reader to Section 2 of Murphy et al. (2019) [157] for full details. We introduce field functions

for the force, f(x, t), cell stiffness, k(x, t), and resting cell length a(x, t), which relate to the

discrete model through

f(xNi (t), t) = fNi ,

k(xNi (t), t) = kNi ,

a(xNi (t), t) = aNi .

(3A.1.26)

Substituting Equation (11) into Equation (14), we focus on the force term on the right side and

consider no proliferation or death. We expand the cell-cell interaction force using the small

cell length parameter lNi , small as the number of cell boundaries inside the spatial average

interval is large, i.e. n� 1 in (x− δx, x+ δx). We then simplify to leading order, integrate over

the spatial average interval, and perform spatial mean-field approximations using n� 1 in the

spatial average interval. We arrive at the force term, −(1/η) ∂2f/∂x2, written in Equation (3),

where the continuous cell-cell interaction force, f , is given by Equation (4). This force term has

an important physical interpretation where the cell density flux, j(x, t), is equal to the gradient

of the cell-cell interaction force,

j(x, t) =
1

η

∂f(x, t)

∂x
. (3A.1.27)

Further we find the cell velocity, u(x, t), is related to the cell density and gradient of the cell-cell

interaction force through Equation (5).
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3A.2 Numerical methods

Here we present the numerical methods used to solve the discrete and continuum models. Key

algorithms used to generate results are available on GitHub

https://github.com/ryanmurphy42/Murphy2020a.git.

3A.2.1 Discrete model

We numerically solve the discrete model with a constant time step algorithm, using a forward

Euler approximation to integrate the discrete equations (1), and rejection sampling to determine

when proliferation and death events occur [74]. This method is valid for all proliferation and

death law mechanisms which we consider. However, we note that to improve computational

efficiency, in the case of the constant proliferation and death law mechanism, we could use

Gillespie’s algorithm [76]. This is possible as the propensities of cells to proliferate or die are

constant within the calculated time to the next reaction interval. This is more difficult for the

linear and logistic proliferation and death mechanisms where, due to mechanical coupling, the

propensity of a cell to proliferate or die can vary appreciably within the calculated time to the

next reaction interval per the Gillespie method. In such a case the Extrande method may be

considered [240].

Euler’s method

To simulate a single discrete realization, we initialise the model with N cells. We prescribe

each cell i with the mechanical cell properties including cell stiffness kNi and resting cell length

aNi . We prescribe proliferation and death mechanisms to each cell i and any associated pro-

liferation or death cell properties. We define the initial cell positions and then for each time

step of size ∆t = 0.0001 we update the cell positions using a simple forward Euler method

to integrate Equations (1) numerically. At the end of each time step we determine whether a

proliferation or death event occurs and if so which cell has proliferated or died. To do so we use

rejection sampling [74] where we generate three independent random numbers from a uniform

distribution, r1, r2, r3 ∼ U [0, 1]. Then a cell event, which could be either a cell proliferation or

cell death event, occurs when

r1 <

N(t)∑
i=1

P (lNi )∆t+

N(t)∑
i=1

D(lNi )∆t,

https://github.com/ryanmurphy42/Murphy2020a.git
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i.e. with probability
N(t)∑
i=1

[
P (lNi ) +D(lNi )

]
∆t. Given that a cell event occurs, a proliferation event

occurs if

r2 <

N(t)∑
i=1

P (lNi )

N(t)∑
i=1

P (lNi ) +
N(t)∑
i=1

D(lNi )

.

Otherwise we have a cell death event. To determine which cell is proliferating, similarly for

dying, we find the index j which satisfies,

j∑
i=1

P (lNi )

N(t)∑
i=1

P (lNi )

< r3 ≤

j+1∑
i=1

P (lNi )

N(t)∑
i=1

P (lNi )

. (3A.2.1)

We then update the node positions, cell properties, and indices according to the model de-

scription in Section 2.1. We repeat for each time step until we have reached the final time. This

approach requires that at most one cell event can occur within each time step which is satisfied

for the parameters used in this work. For other parameters where this assumption may not be

valid the size of the time step could be reduced.
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3A.2.2 Continuum model

We now outline the numerical method we use to solve the continuum model. First, for com-

pleteness, we rewrite the governing equations for cell density, q(x, t),

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
+ q(x, t) P

(
1

q(x, t)

)
− q(x, t) D

(
1

q(x, t)

)
, (3A.2.2)

where the cell-cell interaction force, f(x, t), is given by

f(x, t) = k(x, t)

(
1

q(x, t)
− a(x, t)

)
, (3A.2.3)

and P (1/q(x, t)), D(1/q(x, t)) are the proliferation and death mechanisms, respectively. The

cell properties are governed by

∂χ(x, t)

∂t
+ u(x, t)

∂χ(x, t)

∂x
= 0, χ = k, a, β, γ, ld, (3A.2.4)

where the cell velocity u(x, t) is given by,

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
. (3A.2.5)

In Equation (3A.2.2) for the cell density we have a second-order spatial derivative, and in

the cell property equations, Equations (3A.2.4), we have first-order spatial derivatives. Both

equations have first-order time derivatives. To begin we discretise the domain of fixed length

L with a uniform mesh with spatial step ∆x. We discretise time with a uniform mesh with

time step ∆t. Second-order spatial derivative terms are approximated by standard central

differences. First-order spatial derivatives are approximated by standard upwind differences.

Temporal derivatives are approximated by a Crank-Nicolson approximation. We then have a

system of nonlinear algebraic equations for the cell density, cell stiffness, resting cell length,

and any other cell properties specified by the proliferation and/or death laws. Each result-

ing system of nonlinear algebraic equations we solve sequentially within the same Newton-

Raphson iteration [44] until a convergence tolerance, ε, is satisfied. In each iteration each

resulting system of linearised tridiagonal algebraic equations is solved using the Thomas algo-

rithm [254]. There are three key choices with this method ∆x, ∆t, and ε. Any implementation of

the numerical method should ensure that ∆x, ∆t, and ε are sufficiently small that the solution

is grid-independent. In the results we present we take ∆x = 0.01, ∆t = 0.00001, and ε = 0.001.

For convenience, we now explain the Newton-Raphson method in more detail and explicitly
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present how we discretise the cell density equation, its boundary condition, discretise cell

property equations, their boundary conditions, and update the interface position when there

are two adjacent populations.

Newton-Raphson method

The following notation is used. We use the subscript j = 1, 2, . . . , J to represent spatial nodes.

We use the superscript n = 1, 2, . . . , T to represent temporal nodes. We use the superscript

r = 0, 1, . . . , Rn to represent the Newton-Raphson iterate within time step n, where iterate

r = Rn is the final iterate which meets the convergence tolerance ε. For convenience, we will

drop the Rn notation for the final iterate of time step n, for example, we write qnj = qn,Rnj for the

cell density at spatial node j.

We now solve for each variable at time step n+1. The initial iterate, corresponding to r = 0,

is given by qn+1,0
j = qnj and χn+1,0

j = χnj for χ = k, a, β, γ, ld. The following is for the rth iterate.

We first solve for the cell density. We substitute Equation (3A.2.3) into Equation (3A.2.2).

For internal spatial nodes, j = 2, 3, . . . , J − 1, we have, after rearranging so that all terms are

on the right hand side, and for convenience multiplying all terms by ∆t, a system of algebraic

equations

0 =− qn+1,r
j + qnj

− ∆t

2η(∆x)2

[
knj−1

(
1

qnj−1

− anj−1

)
− 2knj

(
1

qnj
− anj

)
+ knj+1

(
1

qnj+1

− anj+1

)]

− ∆t

2η(∆x)2

[
kn+1,r−1
j−1

(
1

qn+1,r
j−1

− an+1,r−1
j−1

)
− 2kn+1,r−1

j

(
1

qn+1,r
j

− an+1,r−1
j

)

+ kn+1,r−1
j+1

(
1

qn+1,r
j+1

− an+1,r−1
j+1

)]

+
∆t

2

[
qnj P

(
1

qnj

)
− qnjD

(
1

qnj

)]

+
∆t

2

[
qn+1,r
j P

(
1

qn+1,r
j

)
− qn+1,r

j D

(
1

qn+1,r
j

)]
.

(3A.2.6)

For boundary nodes, j = 1, J , we have fixed boundaries which correspond to zero velocity

boundary conditions

∂f(x, t)

∂x
= 0, x = 0, L. (3A.2.7)

We apply a forward difference approximation to Equation (3A.2.7) at x = 0, corresponding to
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spatial node j = 1,

0 =
1

∆x

[
kn+1,r−1

2

(
1

qn+1,r
2

− an+1,r−1
2

)
− kn+1,r−1

1

(
1

qn+1,r
1

− an+1,r−1
1

)]
, (3A.2.8)

and a backward difference approximation to Equation (3A.2.7) at x = L, corresponding to

spatial node j = J ,

0 =
1

∆x

[
kn+1,r−1
J

(
1

qn+1,r
J

− an+1,r−1
J

)
− kn+1,r−1

J−1

(
1

qn+1,r
J−1

− an+1,r−1
J−1

)]
. (3A.2.9)

Equations (3A.2.6), (3A.2.8) and (3A.2.9) can be combined to form a tridiagonal matrix F (qn+1,r),

where qn+1,r is the system of algebraic equations of the rth iterate of the Newton-Raphson

method at time step n+ 1. We then calculate the Jacobian, J(qn+1,r), of F (qn+1,r). We form

a linear system for the rth iterate of the Newton-Raphson method within the time step n+ 1 as

J(qn+1,r) δqn+1,r = −F (qn+1,r), (3A.2.10)

where δqn+1,r is the Newton-Raphson correction. As F (qn+1,r) is tridiagonal we solve this

using the Thomas algorithm [254], to the determine the next iterate,

qn+1,r+1 = qn+1,r + δqn+1,r (3A.2.11)

Next we sequentially solve for each cell property. We calculate the velocity at each node,

vn+1,r
j ,

vn+1,r
j =

1

η

1

qn+1,r
j

[
kn+1,r−1
j+1

(
1

qn,rj+1

− an+1,r−1
j+1

)
− kn+1,r−1

j−1

(
1

qn+1,r
j−1

− an+1,r−1
j−1

)]
. (3A.2.12)

Then we substitute Equation (3A.2.5) into Equation (3A.2.4) and consider χ = k. If vn+1,r
j > 0,

then we apply a backward difference approximation to the first-order spatial derivatives and a

Crank-Nicolson approximation for the time derivative

0 =kn+1,r
j − knj

− ∆t

2η(∆x)2

{[
knj

(
1

qnj
− anj

)
− knj−1

(
1

qnj−1

− anj−1

)] [
knj − knj−1

]
+

[
kn+1,r
j

(
1

qn+1,r
j

− an+1,r−1
j

)
− kn+1,r

j−1

(
1

qn+1,r
j−1

− an+1,r−1
j−1

)][
kn+1,r
j − kn+1,r

j−1

]}
.

(3A.2.13)
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Similarly, if vn+1,r
j < 0, then we apply a forward difference approximation.

For only mechanical relaxation or for mechanical relaxation with proliferation, we have fixed

boundary conditions at x = 0, L, at spatial nodes j = 1, J , respectively,

kn+1,r
1 = kn1 ,

kn+1,r
J = knJ .

(3A.2.14)

These boundary conditions also apply for cell death in a homogeneous population. However,

when we have cell death with two adjacent populations, for example in Section 3.2, we need

to modify a boundary condition when one population becomes extinct. To do so, we calculate

the total cell number for each tissue within each time step. When the total number of cells in

a tissue decreases below one we remove this tissue by setting the interface position equal to

the relevant domain boundary, and make cell properties homogeneous across the domain by

setting them equal to the values in the remaining tissue. Then, similarly to Equations (3A.2.10)

and (3A.2.11), we solve for kn+1,r.

In the examples presented in this work, the resting cell length, a, and proliferation and death

properties, β, γ and ld, are homogeneous across the population. Therefore, they do not need

to be simulated and we set δan+1,r = δβn+1,r = δγn+1,r = δln+1,r
d = 0. However, if any of

a, β, γ or ld are heterogeneous, we extend the above by discretising the relevant cell property

equations and boundary conditions similarly to Equations (3A.2.13) and (3A.2.14).

When we have two populations we also update the interface position, s(t). To do so, we

find the closest spatial node to s(t) and calculate the velocity at this node. Suppose that the

closest spatial node is at node j then we set δsn+1,r = vn+1,r
j ∆t and update the interface

position through

sn+1,r = sn + δsn+1,r. (3A.2.15)

We iterate until ||δqn+1,r,δkn+1,r,δan+1,r,δβn+1,r,δγn+1,r,δln+1,r
d , δsn+1,r||∞ < ε.

Initial conditions

Equations (3)-(6) have the following initial conditions, for 0 < x < L,

q(x, 0) = q0(x), χ(x, 0) = χ0(x) for χ = k, a, β, γ, ld. (3A.2.16)
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If initial conditions are provided only for the discrete model they can be converted to continuum

model initial conditions. This has been discussed in previous work, see Supplementary Section

1 of Murphy et al. (2019) [157].
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3A.3 Homogeneous population

We now present additional results for the homogeneous population: an exact calculation for

extinction with constant proliferation and death mechanisms, and results for logistic proliferation

and death mechanisms.

3A.3.1 Extinction for constant proliferation and death

In Section 3.1 of the main manuscript, we consider a homogeneous population with constant

proliferation and constant death mechanisms with equal rates. In this case, the average of the

discrete realizations shows good agreement with the corresponding solution of the continuum

model. However, each individual realization exhibits very different behaviour to the continuum

model. Due to the total cell number following a linear birth-death process independent of me-

chanical relaxation, each individual realization will eventually become extinct and the averaged

total cell number displays increasing variance with time (Ross 1996). We now present the exact

expressions for the extinction probability, mean, and standard deviation of the linear birth-death

process. Corresponding results from the discrete realizations are then shown to match these

expressions.

For the constant proliferation and death law combination with equal proliferation and death

rates, β, we follow the work of Morgan (1977) who applies conditioning arguments to find the

following probability generating function

G(z; t) =

(
z + βt (1− z)
1 + βt (1− z)

)N(0)

, (3A.3.1)

where N(0) is the initial cell population and z is a dummy variable defined for |z| ≤ 1. The

extinction probability, P (E), is

P (E) = P (N(t) = 0) = G(0; t) =

(
βt

1 + βt

)N(0)

. (3A.3.2)

We observe that P (N(t) = 0) → 1 as t → ∞, i.e. every individual realization will eventually

become extinct. The mean is the same as the initial cell number,

E (N(t)) =
∂G(z; t)

∂z

∣∣∣∣
z=1

= N(0). (3A.3.3)
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The standard deviation, σ(t), is

σ(t) =
√

2N(0)βt. (3A.3.4)

We now compare these exact formulas with our discrete simulation, with N(0) = 40 and find

very good agreement (Figure 3A.3).

Figure 3A.3: Comparison of 5000 discrete realizations with the exact expressions for the (a) mean
and variance of total cell number and the (b) probability of extinction, P (E). Results shown for a
homogeneous population with k = 10, a = 0, constant proliferation and death laws with equal rates,
β = 0.01, and 0 < t < 10000.



CHAPTER 3A. SUPPLEMENTARY MATERIAL 121

3A.3.2 Reduced variance with cell-length-dependent mechanisms

In Figures 3 and 4 in the main manuscript, we observe reduced variance in population with

cell-length dependent proliferation and death mechanisms in comparison to cell-length inde-

pendent proliferation and death mechanisms. Here, we explore the difference between con-

stant and linear proliferation death mechanisms by presenting a single realisation for each

(Figure 3A.4). In the constant proliferation and death mechanism case the net proliferation

rate, which is the sum of probabilities of each cell to proliferate minus the sum of probabilities

of each cell to die, is always zero (Figure 3A.4e). However, with the linear proliferation and

death mechanism the net proliferation rate adjusts, due to changes in number of cells and their

cell lengths, to stabilise the population at its equilibrium value (Figure 3A.4f,h).
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Figure 3A.4: Homogeneous population with constant and linear cell-length dependent proliferation and
death mechanisms. (a)-(b) Net proliferation rate for a single cell, P −D, dependent cell length, l. (c)-(d)
Single realizations of cell boundary characteristics for 0 ≤ t ≤ 100. (e)-(f) Net proliferation rate for the
single realizations. (g)-(h) Total cell number for single realization (blue) compared to the continuum
solution (green).
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3A.3.3 Homogeneous population: logistic proliferation and death

In Figures 3 and 4 in the main manuscript we present results for a homogeneous population

with constant and linear cell-length-dependent proliferation mechanisms, respectively. We now

present results for homogeneous population for the logistic proliferation and death mechanism

(Figure 3A.5).
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Figure 3A.5: Homogeneous population with logistic proliferation and death mechanisms. Proliferation
only, death only, and proliferation with death shown in left, middle and right columns, respectively. (a)-
(c) Single realizations of cell boundary characteristics for 0 ≤ t ≤ 100. (d)-(f), (g)-(i), (j)-(l) Density
snapshots at times t = 0, 25, 75, respectively. (m)-(o) Total cell number. The average and standard
deviation (blue error bars) of 2000 discrete simulations are compared to solution of continuum model
(green).
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3A.3.4 Piecewise proliferation: varying mechanical relaxation rate

In Figure 7 in the main manuscript we show that the solution of the continuum model can

differ significantly from the solution to the discrete model with slow mechanical relaxation,

k = 0.0001, and matches extremely well when k = 1000. We now present the density snapshots

corresponding to Figure 7. For k = 0.0001 the density snapshots have jumps at locations of

the initial cell boundaries and density in the discrete model is higher than the continuum model

(Figure 3A.6a,c,e). For k = 1000 the discrete model and continuum model are consistent

(Figure 3A.6b,d,f).
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Figure 3A.6: Homogeneous population with piecewise proliferation mechanism. With slow mechanical
relaxation, k = 0.0001, and faster mechanical relaxation, k = 1000, shown in left and right columns,
respectively. (a)-(f) Density snapshots at times t = 0, 30, 100 where the average and standard deviation
(blue error bars) of 2000 discrete simulations are compared to solution of continuum model (green).
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In Figure 7 in the main manuscript we show that at later times the solution of the continuum

model can differ significantly from the solution to the discrete model with slow mechanical

relaxation, k = 0.0001, and matches extremely well when k = 1000. We now show N(400) for

intermediate values of k in Figure 3A.7.

Figure 3A.7: Homogeneous population with piecewise proliferation mechanism. N(400) with varying
mechanical relaxation rates through cell stiffness k. Increasing the cell stiffness k improves matching
between discrete and continuum model. Cell stiffness plotted on a logarithmic axis.
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3A.4 Mechanical cell competition

We now present additional results for a heterogeneous population: an exact calculation for cell

size at mechanical equilibrium, and results for logistic proliferation and death.

3A.4.1 Two populations: cell size at mechanical equilibrium

Here we show that, for cells in extension, cells with lower cell stiffness are larger than cells

with higher cell stiffness at mechanical equilibrium. As mechanical relaxation is chosen to be

fast relative to the proliferation and death rates the system will be at mechanical equilibrium,

except for the short transition following a proliferation or death event.

In Section 3.2 of the main manuscript, we are interested in two adjacent populations which

we denote tissue 1 and tissue 2. We assume there are Ni cells in tissue i and cells in tissue i

have cell stiffness Ki and resting cell length Ai. From previous work [157] the interface position

at mechanical equilibrium, S = limt→∞ s(t), is

S =
K1A1
K2

+ L
N2
−A2

K1
K2N1

+ 1
N2

. (3A.4.1)

Assuming Ai = 0 this simplifies to

S =
L

K1N2
K2N1

+ 1
. (3A.4.2)

Letting li be the length of a cell in tissue i then

l1 =
S

N1
,

l2 =
L− S
N2

.

(3A.4.3)

Substituting Equation (3A.4.2) into Equation (3A.4.3) gives

l1 =
L

K1N2
K2

+N1

,

l2 =
L

N2 + K2N1
K1

.

(3A.4.4)

It can then be shown that if K1 < K2 then l1 > l2. This corresponds to cells of lower stiffness

being larger at mechanical equilibrium and this is independent of the number of cells in tissue

1 and 2.
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3A.4.2 Mechanical cell competition: robustness to initial conditions

In this section, we explore the robustness of results to changes in the initial conditions. We

consider the linear combination as in Section 3.2 and Figure 6. In Figure 6 we started the

simulation with 20 cancer cells, each with cell stiffness k1 = 10, and 20 healthy cells, each with

cell stiffness k2 = 20. We first keep k1 = 10 and k2 = 20 and start the simulations with one

cancer cell and 39 healthy cells in Figure 3A.8, and with 10 cancer cells and 30 healthy cells in

Figure 3A.9. We then set k1 = 10 and k2 = 11 and start with 20 cancer cells and 20 healthy

cells in Figure 3A.10. In all results we observe that same behaviour that the difference in cell

stiffness is sufficient to allow cancer to invade and takeover the tissue, provided cancer cells

have lower stiffness than healthy cells.

We also note that when starting the simulation with one cancer cell, as in Figure 3A.8, there

is a slight mismatch between the discrete model and the continuum model. This is because in

the discrete model the cancer cells will initially go extinct with a higher probability than if the

model is started with a higher initial number of cancer cells as in Figures 3A.9 and 6.
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Figure 3A.8: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. Starting with 1 cancer cell and 39 healthy cells. First row
shows a single realization of cell boundary characteristics for 0 ≤ t ≤ 200. Colouring in (a),(b) represent
cell density and cell stiffness, respectively. (c)-(d), (e)-(f), (g)-(h) Density and cell stiffness snapshots,
left and right, respectively, at times t = 0, 25, 50, respectively. (i) Total cell number, N(t) > 0, for cancer
(red/magenta) and healthy cells (blue/cyan) for the discrete/continuum solutions. (j) Interface position,
s(t), where the dotted line shows the edge of the domain. The average and standard deviation (blue
error bar) of 2000 discrete simulations are compared to the solution of the continuum model (green).
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Figure 3A.9: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. Starting with 1 cancer cell and 39 healthy cells. First row
shows a single realization of cell boundary characteristics for 0 ≤ t ≤ 200. Colouring in (a),(b) represent
cell density and cell stiffness, respectively. (c)-(d), (e)-(f), (g)-(h) Density and cell stiffness snapshots,
left and right, respectively, at times t = 0, 25, 50, respectively. (i) Total cell number, N(t) > 0, for cancer
(red/magenta) and healthy cells (blue/cyan) for the discrete/continuum solutions. (j) Interface position,
s(t), where the dotted line shows the edge of the domain. The average and standard deviation (blue
error bar) of 2000 discrete simulations are compared to the solution of the continuum model (green).
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Figure 3A.10: Results for cancer invasion with adjacent populations using linear proliferation and death
mechanisms with proliferation and death. Starting with 20 cancer cell and 20 healthy cells and set
k1 = 10 and k2 = 11. First row shows a single realization of cell boundary characteristics for 0 ≤ t ≤ 200.
Colouring in (a),(b) represent cell density and cell stiffness, respectively. (c)-(d), (e)-(f), (g)-(h) Density
and cell stiffness snapshots, left and right, respectively, at times t = 0, 25, 50, respectively. (i) Total cell
number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan) for the discrete/continuum
solutions. (j) Interface position, s(t), where the dotted line shows the edge of the domain. The average
and standard deviation (blue error bar) of 2000 discrete simulations are compared to the solution of the
continuum model (green).
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3A.4.3 Mechanical cell competition: logistic combination

In this section, we repeat the scenario presented in Section 3.2 but now with the logistic prolif-

eration and death mechanisms rather than the linear proliferation and death mechanisms. We

observe similar qualitative results.

With mechanical relaxation and proliferation only, we observe that the interface position

is on average the same as the initial condition which was chosen as mechanical equilibrium

(Figure 3A.11). This is expected as proliferation is independent of cell length and therefore

mechanical relaxation. Therefore we also expect that the total number of cells in tissue 1 and

tissue 2 are, on average, equal (Figure 3A.11i). From Equation (3A.4.2) we expect the initial

condition of mechanical equilibrium to be maintained. Similarly, in the continuum model both

tissues have the same proliferation rate therefore the interface position, s(t), is maintained

(Figure 3A.11j).

For mechanical relaxation with proliferation and death, we now observe that the cancer cells

extend and the healthy cells are smaller. The smaller healthy cells then eventually die and the

cancer cells take over the domain. This is because the death mechanism is now dependent

on cell length and therefore dependent on mechanical relaxation (Figure 3A.12). Note that the

total cell number for each population does not decrease below zero, the error bars represent

the standard deviation about the mean.
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Figure 3A.11: Results for cancer invasion with adjacent populations using logistic proliferation and
death mechanisms with proliferation only. (a),(b) A single realization of cell boundary characteristics
for 0 ≤ t ≤ 100. Colouring in (a),(b) represent cell density and cell stiffness, respectively. (c)-(d),
(e)-(f), (g)-(h) Density and cell stiffness snapshots, left and right, respectively, at times t = 0, 25, 100,
respectively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan)
for the discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows the edge
of the domain. The average and standard deviation (blue error bars) of 2000 discrete simulations are
compared to the solution of the continuum model (green).
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Figure 3A.12: Results for cancer invasion with adjacent populations using logistic proliferation and
death mechanisms with proliferation and death. First row shows a single realization of cell boundary
characteristics for 0 ≤ t ≤ 500. Colouring in (a),(b) represent cell density and cell stiffness, respec-
tively. (c)-(d), (e)-(f), (g)-(h) Density and cell stiffness snapshots, left and right respectively, at times
t = 0, 25, 200, respectively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells
(blue/cyan) for the discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows
the edge of the domain. The average and standard deviation (blue error bars) of 2000 discrete simula-
tions are compared to the solution of the continuum model (green).
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3A.4.4 Varying mechanical relaxation rate

In Figure 6 in the main manuscript, mechanical cell competition is considered with cell stiff-

nesses K1 = 10,K2 = 20, and linear proliferation and death mechanisms. Here, in Fig-

ure 3A.13, we present the same problem with reduced mechanical relaxation rates and ob-

serve that the continuum model is a reasonably good approximation even for cell stifnesses

K1 = 0.0001,K2 = 0.0002.

Figure 3A.13: Results for cancer invasion with adjacent populations using linear proliferation and
death mechanisms with proliferation and death with slower mechanical relaxation, k = 0.1 in (a,b)
and k = 0.0001 in (c,d). (a,c) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells
(blue/cyan) for the discrete/continuum solutions. (b,d) Interface position, s(t), where the dotted line
shows the edge of the domain. The average and standard deviation (blue error bar) of 2000 discrete
simulations are compared to the solution of the continuum model (green).
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4.0 Preamble

An article published in Applied Mathematics Letters

Murphy RJ, Buenzli PR, Baker RE, Simpson MJ (2021). Travelling waves in a free boundary

mechanobiological model of an epithelial tissue. Applied Mathematics Letters. 111: 106636.

doi: 10.1016/ j.aml.2020.106636. arxiv preprint

This chapter includes Publication 3, addresses objective 3 and research question 3. This

chapter extends the work of Chapters 2 and 3, by considering a free boundary rather than a

fixed boundary and analysing the continuum model derived in earlier chapters. The key results

include extending the continuum model to a free boundary and examining travelling wave be-

haviour. Using this we show travelling wave solutions that may invade or retreat depending on

whether the carrying capacity density corresponds to cells being in compression or extension.

Further, travelling wave solutions have well-defined fronts and are not associated with hetero-

clinic orbits in the phase plane. Furthermore, as this chapter focuses solely on the continuum

model, derived in earlier chapters, and due to the formatting of the journal where this article

has been published, the layout of this chapter is slightly different to other chapters in Part 1 of

this thesis. This chapter includes the following sections: Abstract; Introduction; Mathematical

Model; and Travelling waves, comprising the results, discussion, and conclusion. Supplemen-

tary material, including additional results, associated with publication 3, is presented in Chapter

4A.

https://doi.org/10.1016/j.aml.2020.106636
https://arxiv.org/pdf/2005.13925.pdf
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4.1 Abstract

We consider a free boundary model of epithelial cell migration with logistic growth and non-

linear diffusion induced by mechanical interactions. Using numerical simulations, phase plane

and perturbation analysis, we find and analyse travelling wave solutions with negative, zero,

and positive wavespeeds. Unlike classical travelling wave solutions of reaction-diffusion equa-

tions, the travelling wave solutions that we explore have a well-defined front and are not associ-

ated with a heteroclinic orbit in the phase plane. We find leading order expressions for both the

wavespeed and the density at the free boundary. Interestingly, whether the travelling wave so-

lution invades or retreats depends only on whether the carrying capacity density corresponds

to cells being in compression or extension.
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4.2 Introduction

Nonlinear reaction-diffusion equations describing the dynamics of a single species often sup-

port travelling wave solutions [161, 201]. The classical example is the Fisher-KPP equation

which has linear diffusion and a logistic reaction term [64,141]. Travelling wave solutions of the

Fisher-KPP equation are associated with heteroclinic orbits in the phase plane and correspond

to invasion with a positive minimum non-dimensional wavespeed c ≥ 2 [96,161]. Since the cell

density q(x, t) → 0 as x → ∞, these solutions do not have compact support and do not allow

us to identify a well-defined front often observed in cell invasion experiments and ecological

invasion [118,140,141,212].

One way of overcoming the lack of a well-defined front is to incorporate degenerate non-

linear diffusion, as in the Porous-Fisher equation [194,195,200,247]. An alternative approach

to obtain travelling wave solutions with a well-defined front is to re-formulate the Fisher-KPP

and Porous-Fisher models as moving boundary problems with a Stefan condition at the mov-

ing boundary [57, 58, 62, 63]. Interestingly the Fisher-KPP, Porous-Fisher, and Fisher-Stefan

models always lead to invading travelling waves where previously vacant regions are even-

tually colonised. None of these single-species models lead to retreating travelling waves

where colonised regions eventually become uncolonised. Similar invading behaviour has

been observed in discrete space and velocity jump processes and their continuum approxi-

mations [139, 143]. Retreating and invading waves have previously been observed for multi-

species models [116].

In this work we consider a single-species model which leads to travelling wave solutions

with a well-defined front that can either invade or retreat. Our free boundary model, which we

derived previously (Chapter 3, [19, 158, 164]), is motivated from a discrete model of a one-

dimensional chain of epithelial cells. In this model cells are treated as mechanical springs that

can be stretched or compressed and relax to a natural resting length. Cells are also able to

proliferate logistically up to a maximum carrying capacity density (Chapter 3, [19, 158, 164]).

We find travelling wave solutions that are very different to the classical travelling waves of

the Fisher-KPP, Porous-Fisher, or Fisher-Stefan models. We find travelling wave solutions for

−∞ < c < ∞ which depend on the two dimensionless parameters. In the phase plane these

travelling waves are not associated with heteroclinic orbits. Instead, they are associated with

an orbit that leaves a saddle equilibrium node until the trajectory passes through a special point

in the phase plane determined by the free boundary conditions. We find and validate analytical

expressions for both the wavespeed and the density at the free boundary. Interestingly, the

distinction between whether the population retreats (c < 0) or invades (c > 0) depends only on
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whether the carrying capacity density corresponds to cells being in compression or extension.

4.3 Mathematical model

We consider a one-dimensional chain of cells forming an epithelial sheet of total length L(t).

Each cell can be thought to act like a mechanical spring which mechanically relaxes towards

its resting cell length, a, according to Hooke’s law. Each cell can proliferate or die logistically.

Our previous work (Chapter 3, [19, 158]) shows this results in a moving boundary problem

with nonlinear diffusivity, a logistic reaction term, and no-flux mechanical relaxation boundary

conditions. After nondimensionalisation, the cell density, q(x, t) > 0, which depends on position

x and time t, is governed by (Chapters 2 and 3, [19,157,158])

∂q(x, t)

∂t
=

∂

∂x

(
1

q(x, t)2

∂q(x, t)

∂x

)
+ q(x, t) (1− q(x, t)) , 0 < x < L(t), (4.3.1)

∂q(x, t)

∂x
= 0, x = 0, (4.3.2)

∂q(x, t)

∂x
=
q(x, t)3

φ

(
1

q(x, t)
− κ
)
, x = L(t), (4.3.3)

dL(t)

dt
= − 1

q(x, t)3

∂q(x, t)

∂x
, x = L(t), (4.3.4)

with two dimensionless parameters κ and φ occurring only in the free boundary condition at

x = L(t) in Eq. (4.3.3). The first, κ = Ka, is the product of the carrying capacity density, K, and

the resting cell length, a, and determines whether the carrying capacity density corresponds

to cells being in compression (κ < 1), at the resting length (κ = 1), or in extension (κ > 1).

The second, φ =
√
βη/(4k), is the ratio of the proliferation rate, β, and mechanical relaxation

rate, that depends on the cell stiffness k and mobility coefficient η. Eq. (4.3.4) governs the

evolution of the free boundary due to mechanical relaxation and mass conservation but can be

thought of as a nonlinear analogue of a Stefan condition [57,58,63]. Eqs. (4.3.1)–(4.3.4) can be

solved numerically by using a boundary fixing transformation [120], discretising the subsequent

equations on a uniform mesh using a central difference approximation. The resulting system

of ordinary differential equations are solved using an implicit Euler approximation, leading to a

system of nonlinear algebraic equations that are solved using Newton-Raphson iteration. Key

code and algorithms are available on GitHub.

https://github.com/ryanmurphy42/Murphy2020c.git
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Figure 4.1: Travelling waves depend on κ: c < 0 for κ = 0.5 < 1, and c > 0 for κ = 2 > 1. (a)-(b) Density
snapshots for varying κ at t = 0 (blue), 10 (red), 20 (yellow), 30 (purple), 40 (green), 50 (cyan). (c)-(d)
(Q, p) phase planes for varying κ. The travelling wave solution corresponds to a trajectory governed by
Eqs. (4.4.2) (magenta) between the saddle node at (Q∗, p∗) = (1, 0) from Eq. (4.4.3) (black circle) and
terminating at the intersection of Eq. (4.4.4) (blue) and (4.4.5) (green) given by Eq. (4.4.6) (red circle).
Continuum solution from Eqs. (4.3.1)–(4.3.4) (cyan line). The degenerate node (Q∗, p∗) = (0, 0) is also
shown (black circle). All results for φ = 1.

4.4 Travelling waves

In Figure 4.1 we present numerical solutions of Eqs. (4.3.1)–(4.3.4) for varying κ and initial

density condition q(x, 0) = 1 for 0 < x < L(0) = 10, which remains uniform and stationary, with

c = 0 for t > 0, when κ = 1. The numerical results in Figure 2(a) suggest the emergence of

travelling wave solutions with c < 0 when κ < 1 (Figure 4.1(a)), with c = 0 when κ = 1 (not

shown), and c > 0 when κ > 1 (Figure 4.1(b)). The travelling waves form after initial transient

behaviour. For κ > 1 the invading travelling waves in the numerical simulations continue as

t → ∞. For κ < 1 we observe retreating travelling wave-like behaviour with c < 0 for some

intermediate time before L(t) approaches x = 0 and boundary effects play a role (not shown).

The cell density at the free boundary is QL > 0.
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After a travelling wave has formed L(t) ∼ ct (Figure S6), where c is the constant speed of

propagation, and we introduce travelling wave coordinates z = x − ct. Letting Q(z) = q(x, t)

then Eq. (4.3.1) becomes

d

dz

(
1

Q(z)2

dQ(z)

dz

)
+ c

dQ(z)

dz
+Q(z) (1−Q (z)) = 0, −∞ < z < 0. (4.4.1)

where we choose z = 0 to correspond to the free boundary at x = L(t).

To analyse Eq. (4.4.1) in the two dimensional phase plane we let p(z) = (1/Q(z)2) dQ(z)/dz

[132] to give

dQ

dz
= pQ2,

dp

dz
= Q [−cpQ− (1−Q)] . (4.4.2)

The dynamical system given by Eqs. (4.4.2) has two equilibrium points. The first at (Q∗, p∗) =

(0, 0) is a degenerate node. The second at (Q∗, p∗) = (1, 0) is a saddle node for c 6= 0 and a

degenerate node when c = 0. Interestingly, in contrast to the Fisher-KPP equation [161], here

linear stability analysis provides no restrictions on c.

We return to the boundary conditions from Eqs. (4.3.2)–(4.3.4), and after transforming to

travelling wave coordinates and writing in terms of p, we obtain

(Q, p) = (1, 0), z → −∞, (4.4.3)

p =
1

φ
(1− κQ) , z = 0, (4.4.4)

p = −cQ, z = 0, (4.4.5)

where Eq. (4.4.3) is informed by numerical travelling wave solutions in Figure 4.1.

In Figures 4.1(c),(d) we generate the (Q, p) phase plane for κ < 1 and κ > 1, respectively,

using MATLAB functions quiver and ode45 [145]. Trajectories corresponding to travelling wave

solutions are initiated on the relevant eigenvector associated with the saddle node. We find that

travelling wave solutions correspond to phase plane trajectories that run between (Q∗, p∗) =

(1, 0), and a special point given by the intersection of Eqs. (4.4.4) and (4.4.5) given by

(QL, pL) =

(
1

κ− cφ,
−c

κ− cφ

)
. (4.4.6)

The remainder of the trajectory beyond (QL, pL), obtained by solving Eqs. (4.4.2), corresponds

to z > 0 and is not associated with the travelling wave solution which is restricted to z ≤ 0.

The part of the trajectory with z > 0 tends to infinity rather than to the degenerate equilibrium
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Figure 4.2: Travelling wave perturbation analysis. (a) Properties of the travelling wave. Wavespeed c
as a function of κ (blue) and density at free boundary QL as a function of κ (red). Solid lines: continuum
model given by Eqs. (4.3.1)–(4.3.4). Dashed lines: leading order implicit solution given by Eq. (4.4.8).
(b) Travelling wave solutions for κ = 0.5 (top), κ = 1 (middle), κ = 2 (bottom) obtained by continuum
model from Eqs. (4.3.1)–(4.3.4) (blue solid) and leading-order perturbation solution from Eq. (4.4.7) (red
dashed). All for fixed φ = 1.

point at (Q∗, p∗) = (0, 0). Therefore, the travelling wave solution is not associated with a

heteroclinic orbit. This is very interesting as classical travelling waves solutions are associated

with heteroclinic orbits in the phase plane [161]- [62].

To provide insight into the travelling wave solutions in Figure 4.1 we now seek to determine

a relationship between c, κ, and φ. By solving the continuum model we expect c→ 0 as κ→ 1

(Figure 4.2(a)). Therefore, we seek a perturbation solution p(Q) = p0(Q) + cp1(Q) +O
(
c2
)

for

|c| � 1 which we substitute into the equation for dp/dQ determined from Eqs. (4.4.2) to find

p0(Q) = ±
√

2 [Q− loge(Q)− 1], (4.4.7)

where the positive root corresponds to c < 0 and the negative root corresponds to c > 0. The

integration constant is chosen such that Eq. (4.4.7) satisfies Eq. (4.4.3). Eq. (4.4.7) corre-

sponds to a small-c approximation of the unstable manifold of the saddle point (1, 0). Applying

the free boundary condition from Eq. (4.4.5) and using QL from Eq. (4.4.6) gives

|c| = (κ− cφ)

√
2

[
1

κ− cφ − loge

(
1

κ− cφ

)
− 1

]
. (4.4.8)

Eq. (4.4.8) can be solved implicitly for c as a function of κ and φ and provides good agreement

with the long time numerical solutions of Eqs. (4.3.1)–(4.3.4) (Figure 4.2). To find an approxi-

mate explicit form for c and QL, we expand Eq. (4.4.8) about κ− cφ = 1, and use Eq. (4.4.6) to
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give

c =
κ− 1

φ+ 1
+O

(
(κ− cφ− 1)3/2

)
, QL =

1 + φ

κ+ φ
. (4.4.9)

We find these leading order expressions in Eq. (4.4.9) to be accurate close to φ = 1 (Figures

4.1,4.2, S1-S5).

In Figure 4.2b we plot the shape of the travelling wave obtained by considering long time

numerical solutions of Eqs. (4.3.1)–(4.3.4) and compare this to the leading order perturbation

solution. The leading order perturbation solution is obtained by solving Eq. (4.4.7) with the

definition of p(z) in Eqs. (4.4.2) together with Eq. (4.4.6) as the initial condition. We observe

excellent agreement for |c| � 1 about κ = 1.

In summary, by considering a reaction-diffusion equation arising from a biologically mo-

tivated discrete model, we find an interesting result where whether a population invades or

retreats corresponds to whether cells at the carrying capacity density are in compression or

in extension, respectively. We also obtain exact expressions for the speed of travelling wave

solutions of Eqs, (4.3.1)–(4.3.4), together with useful approximations of the shape of the trav-

elling wave solutions when |c| � 1. We do not pursue an existence proof of these travelling

wave solutions here, but leave this for future consideration [118].
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S1 Additional Figures

Results for Figure 1 and 2 in the manuscript are presented for φ = 1. We now reproduce these

figures for φ = 0.5 and φ = 2 in Figures S1, S2 and Figures S3, S4, respectively.

In Figure S5 we plot the dependence of the wavespeed, c, and density at the boundary,

QL, against φ for κ = 0.75 and κ = 1.25.

In Figure S6, we support the statement that after the travelling waves have formed L ∼ ct

by plotting L(t) against t for the results corresponding to Figure 1. Similar excellent agreement

is found for other results (not shown).
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Figure S1: Results for φ = 0.5. Travelling waves depend on κ: c < 0 for κ = 0.5 < 1, and c > 0 for
κ = 2 > 1. (a)-(b) Density snapshots for varying κ at t = 0 (blue), 10 (red), 20 (yellow), 30 (purple), 40
(green), 50 (cyan). (c)-(d) (Q, p) phase planes for varying κ. The travelling wave solution corresponds
to a trajectory governed by Eqs. (6) (magenta) between the saddle node at (Q∗, p∗) = (1, 0) from Eq. (7)
(black circle) and terminating at the intersection of Eq. (8) (blue) and 9) (green) given by Eq. (10) (red
circle). Continuum solution from Eqs. (1)–(4) (cyan line). The degenerate node (Q∗, p∗) = (0, 0) is also
shown (black circle).
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Figure S2: Travelling wave perturbation analysis for φ = 0.5. (a) Properties of the travelling wave.
Wavespeed c as a function of κ (blue) and density at free boundary QL as a function of κ (red). Solid
lines: continuum model given by Eqs. (1)–(4). Dashed lines: leading order implicit solution given by
Eq. (12). (b) Travelling wave solutions for κ = 0.5 (top), κ = 1 (middle), κ = 2 (bottom) obtained by
continuum model from Eqs. (1)–(4) (blue solid) and leading-order perturbation solution from Eq. (11)
(red dashed).
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Figure S3: Results for φ = 2. Travelling waves depend on κ: c < 0 for κ = 0.5 < 1, and c > 0 for
κ = 2 > 1. (a)-(b) Density snapshots for varying κ at t = 0 (blue), 10 (red), 20 (yellow), 30 (purple), 40
(green), 50 (cyan). (c)-(d) (Q, p) phase planes for varying κ. The travelling wave solution corresponds
to a trajectory governed by Eqs. (6) (magenta) between the saddle node at (Q∗, p∗) = (1, 0) from Eq. (7)
(black circle) and terminating at the intersection of Eq. (8) (blue) and (9) (green) given by Eq. (10) (red
circle). Continuum solution from Eqs. (1)–(4) (cyan line). The degenerate node (Q∗, p∗) = (0, 0) is also
shown (black circle).



CHAPTER 4A. SUPPLEMENTARY MATERIAL 151

κ

c

2

1

0

0.0

-0.6
0 1 2

(a) (b)

Q(z)

z
-2.5 0.0-5.0

2

1

0

0.6

QL

Figure S4: Travelling wave perturbation analysis for φ = 2. (a) Properties of the travelling wave.
Wavespeed c as a function of κ (blue) and density at free boundary QL as a function of κ (red). Solid
lines: continuum model given by Eqs. (1)–(4). Dashed lines: leading order implicit solution given by
Eq. (12). (b) Travelling wave solutions for κ = 0.5 (top), κ = 1 (middle), κ = 2 (bottom) obtained by
continuum model from Eqs. (1)–(4) (blue solid) and leading-order perturbation solution from Eq. (11)
(red dashed). All for fixed φ = 2.
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Figure S5: Travelling wave perturbation analysis. Properties of the travelling wave. Wavespeed c as
a function of φ (blue) and density at free boundary QL as a function of φ (red) for (a) κ = 0.75 and
(b) κ = 1.25. Solid lines: continuum model given by Eqs. (1)–(4). Dashed lines: leading order implicit
solution given by Eq. (12).
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Figure S6: Evolution of tissue length L(t). Comparison of continuum model given by Eqs. (1)–(4) (solid
blue lines) with L(t) ∼ ct (red dashed lines). (a) κ = 0.5 < 1 and L(t) = 10 + ct where c = 0.484. (b)
κ = 2 > 1 and L(t) = 10 + ct where c = −0.256. Solutions correspond to Figure 1 for φ = 1.
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5.0 Preamble

An article published in Physical Biology

Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo H, Baker RE, Simpson MJ (2021).

The role of mechanical interactions in epithelial mesenchymal transitions. Physical Biology.

18:046001. doi:10.1088/1478-3975/abf425. bioRxiv preprint

This chapter includes Publication 4, addresses objective 4 and research question 4. This

chapter extends the work of Chapters 2, 3, and 4, by incorporating diffusion of a chemical that

influences the rate at which cells detach from the tissue boundary, in a process called epithelial-

mesenchymal transition (EMT). As explored in earlier chapters, cells in epithelial tissues are

characterised as moving collectively and being closely adherent. However, these epithelial

cells can undergo phenotypic and morphological changes to partially or fully transition to mes-

enchymal cells, typically characterised as cells that are less adherent to other cells and tend

to move as individuals, in a process called epithelial-mesenchymal transitions (EMT) (Figure

5.0, [110, 249]). The key results of this chapter are to extend the discrete model from previ-

ous chapters to describe the role of mechanical interactions in epithelial-mesenchymal transi-

tions. To incorporate epithelial-mesenchymal transitions we extend the free boundary model in

Chapter 4 by allowing cells to detach from the free end of the tissue dependent on a diffusing

EMT-inducing chemical. Other key results include a derivation to obtain the corresponding the

continuum model, and the continuum model. Using this novel nonlinear free boundary prob-

lem we explore how mechanochemical coupling influences epithelial-mesenchymal-transitions.

Supplementary material, such as numerical methods and additional results, associated with

publication 4, is presented in Chapter 5A.

Figure 5.0: Schematic for epithelial-mesenchymal-transitions (EMT). Figure 1 from [55] reproduced
with permission.

https://doi.org/10.1088/1478-3975/abf425
https://www.biorxiv.org/content/10.1101/2020.12.09.418434v3
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5.1 Abstract

The detachment of cells from the boundary of an epithelial tissue and the subsequent invasion

of these cells into surrounding tissues is important for cancer development and wound healing,

and is strongly associated with the epithelial-mesenchymal transition (EMT). Chemical signals,

such as TGF-β, produced by surrounding tissue can be uptaken by cells and induce EMT. In

this work, we present a novel cell-based discrete mathematical model of mechanical cellular

relaxation, cell proliferation, and cell detachment driven by chemically-dependent EMT in an

epithelial tissue. A continuum description of the model is then derived in the form of a novel

nonlinear free boundary problem. Using the discrete and continuum models we explore how

the coupling of chemical transport and mechanical interactions influences EMT, and postulate

how this could be used to help control EMT in pathological situations.
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5.2 Introduction

Cell detachment driven by epithelial-mesenychmal transitions (EMT) is crucial to many bio-

logical processes: embryonic development; later development in adults; wound healing; and

cancer development [124, 229, 249]. During EMT, changes in gene expression and post-

translational regulation mechanisms lead to increased invasive ability through the loss of ep-

ithelial characteristics and the acquisition of mesenchymal characteristics [249]. This transition

is characterised by the loosening of cell-cell junctions and breakdown of the basement mem-

brane [249]. EMT can be induced by chemical signals, such as TGF-β [41], and is regulated by

physical signals such as mechanical stress [77]. While EMT plays an important role in devel-

opment, where it is a highly controlled and regulated process, EMT can be detrimental when

initiated by cancer systems as it accelerates malignant progression and metastasis [178]. Fur-

thermore, as 90% of cancer related deaths are associated to metastatic spread rather than

cancer limited to a primary site [42], EMT is an important factor when considering therapy

regimes [15, 23, 24, 142]. Previous theoretical models of EMT have largely neglected the role

of mechanical interactions. Therefore, in this work we develop a novel mathematical model to

explore how mechanical interactions between cells influence EMT and the evolution of a pri-

mary tumour. Using our model, we ask when do tumours grow or shrink, and how mechanical

interactions and an EMT-inducing chemical could influence the rate of cell detachment. These

insights could be used to help understand how to control EMT in pathological situations.

Mathematical models have proven to be a powerful tool to improve our understanding of

EMT by providing a conceptual framework in which to integrate and analyse experimental data

and make testable predictions, some of which have since been experimentally validated, for

example, the existence of the epithelial/mesenchymal hybrid state [41,110,111,137,226,229]

and waves of temporal cell-cell detachments [12, 187]. Experimental and modelling stud-

ies are typically performed either at the single-cell level, by considering regulatory networks

[137, 226, 229], or at the population-level, for example where cell populations are modelled

with lattice based frameworks and the inclusion of cell-cell communication results in spatial

heterogeneity [25]. However, existing models for EMT typically do not account for mechanical

relaxation nor cell proliferation, both of which influence cell migration and cell size [25, 77].

These processes are thought to play a key role in cell-cell communication, tissue size, and

the rate of cell detachment driven by EMT [25, 26]. Further, existing models typically do not

connect descriptions of single-cell processes to population-scale behaviours.

In this work, we develop and explore a novel mathematical model of EMT which includes

mechanical cellular relaxation, cell proliferation and cell detachment driven by chemical sig-
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nals. We allow individual cells to detach from the tissue at the free boundary where the

chemical concentration is highest [25]. This leads to a novel nonlinear free boundary prob-

lem. The evolution of epithelial monolayers and tumours have previously been modelled as

free boundary problems [140, 198, 201]. However, many previous studies specify a classical

one-phase Stefan condition [51] at the free boundary, where the rate of expansion of the free

boundary is assumed proportional to the spatial gradient of the density without strong biolog-

ical justification, or the evolution of the tissue length is specified according to experimental

observations [48, 49, 203, 207–209]. Here, the evolution of the tissue boundary arises natu-

rally from the cell-scale processes of cell proliferation, mechanical cellular relaxation (Chapter

4, [19,159,225]), and cell detachment.

To implement this model, we start with a cell-based discrete model, where we prescribe

individual cell-level properties, and then derive the corresponding tissue-level continuum partial

differential equation model. This approach extends previous studies (Chapters 2, 3, and 4,

[19,68,157–159,164,165,225,256]) all of which consider mechanical cell movement, but do not

consider cell detachment driven by EMT. The continuum model is useful to analyse possible

behaviours of the model including tissue shrinkage, tissue homeostasis, and tissue growth

depending on the initial number of cells, mechanical cell properties, the rate of proliferation, and

chemical diffusivity. Importantly, we provide guidance when the discrete and continuum models

are accurate. To simulate the mathematical model numerically, we devise a new method to

incorporate chemical diffusion in an evolving population of cells with variable cells lengths.

This work is structured in the following way; we present the cell-based discrete model

(Section 5.3.1) and derive the corresponding continuum model (Section 5.3.2). Then using

the new discrete and continuum models we explore when tumours grow or shrink, and how

mechanical interactions and an EMT-inducing chemical could influence the rate of cell detach-

ment. To do so we consider different mechanisms in the models: cell-length-independent

proliferation mechanism and chemically-independent cell detachment (Section 5.4.1); cell-

length-dependent proliferation mechanism and chemically-independent cell detachment (Sec-

tion 5.4.2); chemically-dependent cell detachment driven by an EMT-inducing chemical which

diffuses slowly (Section 5.4.3), or which diffuses quickly (Section 5.4.4).
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5.3 Model description

In this section, we present the new discrete model of mechanical cellular relaxation, cell pro-

liferation, and cell detachment driven by a chemically-dependent EMT process in an epithelial

tissue. We then derive the corresponding continuum model. To simplify the model, we suppose

that linear diffusion is the key transport mechanism by which the chemical that induces EMT

is transported from the free boundary inwards through the cells in the epithelial tissue (Figure

5.1).

5.3.1 Discrete model

We consider a one-dimensional chain of cells to represent the cross-section of an epithelial

tissue (Figure 5.1). Each cell is assumed to act like a mechanical spring (Chapters 2, 3, and

4, [19, 157–159, 198, 225]). The tissue has a fixed boundary at x = 0 and a free boundary at

x = L(t) > 0. Cells undergo mechanical relaxation which results in changes in cell length and

corresponding movements of cell boundaries. Cell i, for i = 1, 2, . . . , N(t), occupies the interval

xi(t) < x < xi+1(t), where xi(t) and xi+1(t) are the positions of the left and right boundaries

of the cell, respectively, so that cell i has length li(t) = xi+1(t)− xi(t). Each cell is prescribed

with cell stiffness k > 0 and resting cell length a > 0. We assume that the motion of each cell

boundary is subject to mechanical interactions and occurs in a viscous medium, resulting in a

drag force with drag coefficient η > 0 (Chapters 2, 3, and 4, [28, 67, 157, 198]). Then, as cells

move in dissipative environments, the motion is assumed to be overdamped (Chapters 2, 3,

and 4, [67,157]) and the cell boundary evolution equations are

dx1

dt
= 0, (5.3.1)

η
dxi
dt

= fi+1(t)− fi(t) i = 1, 2, . . . , N(t), (5.3.2)

η
dxN+1

dt
= −fN (t), (5.3.3)

where, for simplicity, we use fi(t) = k (li(t)− a) to represent a linear Hookean force law, and

N(t) evolves in time due to proliferation and cell detachment.

We assume any cell in the tissue is able to proliferate via a stochastic cell proliferation

mechanism that may depend on cell length. We assume that cell i proliferates with probability

P (li)dt in the small time interval [t, t+ dt), where the function P (·) depends on the proliferation

mechanism considered, and li is the current cell length (Figure 5.2(b)). When a proliferation

event occurs in a cell of length li, the cell divides into two cells of length li/2, and any chemical
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(a) Cell detachment at a constant rate

Cell detachment driven by chemically dependent EMT 

(d) Impact of proliferation on size and chemical concentration

x = 0 xN = L(t)

t

x = 0 xN = L(t + dt)

t + dt

x = 0 L(t)

t1

t2

L(t2 + dt)

t2 + dt

(b) low diffusion (c) high diffusion

L(t1)

t1

L(t2)

t2

t2 + dt

a a 2a

xi-1 xi xi+1

L(t2)x = 0

x = 0 L(t2+ dt)

x = 0

x = 0

x = 0

xi-1 xi

Figure 5.1: Schematic for models of EMT and cell detachment. (a) Boundary cell detachment at
a constant rate. (b)-(c) Boundary cell detachment driven by chemically-dependent EMT with (b) low
diffusion and (c) high diffusion. The EMT-inducing chemical diffuses inwards from the external environ-
ment through the cell at the free boundary. In (b) with low diffusion the boundary cell contains most
of the EMT-inducing chemical whereas in (c) with high diffusion the chemical is spread throughout the
boundary and internal cells. Chemical concentration is shown with colouring: low concentration below
the cell-detachment chemical threshold (light red) to a higher concentration above the cell-detachment
chemical threshold (dark red). (d) Proliferation produces two identical daughter cells. Each daughter
cell mechanically relaxes to the resting cell length and the concentration changes accordingly.
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inside the cell is conserved and divided equally between the two daughter cells. The chemical

concentration subsequently dilutes as the daughter cells mechanically relax to their resting cell

lengths (Figure 5.1(d)).

We assume an external source of EMT-inducing chemical and suppose that linear diffu-

sion is the key transport mechanism by which the chemical is transported into and through the

epithelial tissue. To model linear diffusion we consider the chain of cells to be a non-uniform

lattice on which we can simulate a point-jump process for molecules of the chemical. As it is

computationally expensive to track many individual particles, we focus on the chemical con-

centration. In the epithelial tissue, each cell i has a chemical concentration ci(t) = Mi(t)/li(t),

where Mi(t) is the number of molecules of the chemical in cell i at time t, and li(t) is the length

of cell i at time t. Therefore, the concentration in each cell is assumed to be well-mixed. Then

the equations governing chemical concentration are [252]

l1
dc1

dt
= − c1

dl1
dt︸ ︷︷ ︸

dilution

+T−2 c2l2 − T+
1 c1l1︸ ︷︷ ︸

diffusion

, (5.3.4)

li
dci
dt

= − ci
dli
dt︸ ︷︷ ︸

dilution

+T+
i−1ci−1li−1 −

(
T+
i + T−i

)
cili + T−i+1ci+1li+1︸ ︷︷ ︸

diffusion

, i = 2, 3, . . . , N − 1, (5.3.5)

lN
dcN
dt

= − cN
dlN
dt︸ ︷︷ ︸

dilution

+T+
N−1cN−1lN−1 − T−N cN lN︸ ︷︷ ︸

diffusion

+ S︸︷︷︸
source

, (5.3.6)

where T±i are left and right transition rates that model linear diffusion of chemical molecules

between neighbouring cells with diffusivity D, respectively. How these transition rates are

chosen requires great care and is detailed in Supplementary Material 5A.2 where we introduce

a new method, called the Interval-Voronoi method. The dilution term in Equations (5.3.4)-

(5.3.6) represents the fact that chemical concentrations increase/decrease as the cell length

reduces/increases. To mimic a chemical diffusing into the tissue from an external source, we

assume that a constant number of molecules per unit time, S, is provided to cell N from the

external source. We further assume that the chemical cannot diffuse across the boundary at

the rear of the tissue (x = 0). This assumption corresponds to modelling only the right hand

side of an epithelial tissue where x = 0 is the middle of the tissue.

Given the chemical concentrations in each cell, we introduce cell detachment driven by

EMT which is a key feature of the discrete mechanical model. Here, we consider cell de-

tachment to be a two-step process. The first step models the EMT process itself as a cell-

state transition whereby cells acquire an invasive phenotype. The boundary cell gains the

invasive phenotype when its chemical concentration is above a constant threshold, C (Figure
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5.2) [41, 137, 226]. If at any time the chemical concentration drops below the threshold the

cell loses its invasive phenotype, which it can only regain once the chemical concentration

increases above C. The ability of the cell to gain and lose its invasive phenotype is associ-

ated with epithelial-mesenchymal plasticity [110]. The second part of the process is where

the boundary cell, once it acquires the invasive phenotype, detaches from the tissue [134] in

[t, t+dt) with probability ω(cN (t)) dt where cN (t) is the chemical concentration in the boundary

cell N at time t. Once a cell detaches we no longer consider its dynamics and we assume it

moves away from the epithelial tissue.

As we are interested in whether tumours grow or shrink, we can consider the evolution of

the total number of cells, N(t), which depends on the balance between proliferation and EMT.

For an individual realisation of this discrete model, N(t) is expected to increase when

N(t)∑
i=1

P (li) > ω(cN ). (5.3.7)

We numerically simulate the discrete model governed by Equations (5.3.1)–(5.3.6), and

prescribe initial conditions for the cell positions, xi(0), the mechanical cell properties k and

a, drag coefficient η, as well as proliferation properties, and assume that there is initially no

chemical inside any cell in the tissue (Supplementary Material 5A.2).

5.3.2 Continuum model

We now derive the corresponding free boundary continuum model for cell detachment driven

by chemically-dependent EMT. Components of this model have been derived in our previous

studies, and where this is the case we state the equation and provide a reference to the reader

for full details (Chapters 2 and 3, [19,157,158,225]).

The cell density, q(x, t) > 0, which is the number of cells per unit length and the continu-

ous analogue of 1/li, evolves according to the following nonlinear moving boundary problem

(Chapter 4, [158])

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2︸ ︷︷ ︸
mechanical relaxation

+ q(x, t)P

(
1

q(x, t)

)
︸ ︷︷ ︸

proliferation

, 0 < x < L(t), (5.3.8)

where f(x, t) = k (1/q(x, t)− a) is the continuous analogue of the discrete Hookean force law

and P (1/q(x, t)) is the continuous analogue of P (li).

The fixed boundary condition at x = 0, corresponding to Equation (5.3.1), is (Chapter 2 and
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3, [157])

∂q(0, t)

∂x
= 0, (5.3.9)

and the mechanical relaxation condition at the free boundary, x = L(t), gives rise to a nonlinear

boundary condition [19,225]

1

2q(L(t), t)

∂f(L(t), t)

∂x
= −f(L(t), t). (5.3.10)

The boundary conditions in Equations (5.3.9) and (5.3.10) ensure that no cells are lost by

crossing the tissue boundaries but cells can still detach at the free boundary, x = L(t). In

the continuum model this corresponds to loss of tissue material at a moving interface [34]. To

capture cells detaching from the tissue at x = L(t), we consider conservation of mass and

derive the following evolution equation for the free boundary (Supplementary Material 5A.1)

dL(t)

dt
=

1

ηq(L(t), t)

∂f(L(t), t)

∂x︸ ︷︷ ︸
mechanical relaxation

− ω (c(L(t), t))

q(L(t), t)
.︸ ︷︷ ︸

cells lost due to detachment

(5.3.11)

The chemical concentration is governed by the following advection-diffusion equation [20,

48,49,225]

∂c(x, t)

∂t
+

∂

∂x
(u(x, t)c(x, t)) = D ∂2c(x,t)

∂x2
, 0 < x < L(t), (5.3.12)

where D is the diffusion coefficient, and the cell velocity, u(x, t), determined from Equation

(5.3.8), is

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
. (5.3.13)

The boundary at x = 0 is fixed, and because there is no chemical transport across this

boundary in the discrete model, we impose the following no-flux boundary condition

∂c(0, t)

∂x
= 0. (5.3.14)

At the free boundary, x = L(t), the only transport of chemical in the discrete model is the

supply of a constant number of molecules per unit time, S, from the external environment. The
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corresponding boundary condition at x = L(t) in the continuum model is

D
∂c(L(t), t)

∂x
= S, (5.3.15)

obtained by enforcing that the total flux of c(x, t) in the frame of reference co-moving with L(t)

is equal to −S [225].

We supplement the continuum model with initial conditions for tissue length, L(0), density

q(x, 0) for 0 < x < L(0), and chemical concentration c(x, 0) for 0 < x < L(0). Then Equa-

tions (5.3.8)–(5.3.10),(5.3.11), and (5.3.12)–(5.3.15) are solved numerically using a boundary

fixing transformation [120] and an implicit finite difference approximation, see Supplementary

Material 5A.3 for further details.
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5.4 Results and discussion

The evolution of the number of cells in the epithelial tissue, N(t), the length of the epithelial

tissue, L(t), and the number of cells that undergo EMT and detach from the epithelial tissue

are coupled. Biologically this coupling is of great interest. In the context of cancer, a primary

tumour site without EMT is a localised problem, whereas a single tumour site with EMT and

cell detachments may result in many secondary tumour sites that can be a greater problem as

90% of cancer related deaths are associated with metastatic spread [42]. We are interested

in how mechanical interactions influence EMT and subsequently how tumours grow or shrink.

Therefore, we choose parameters to explore the range of behaviours that our new mathemat-

ical model of EMT predicts. Further, as the continuum model is useful to analyse possible

behaviours, we seek to understand when the continuum model is a good description of the

underlying discrete model by considering initial populations with low numbers of cells. Our

parameter choices are also consistent with experimental observations that can vary greatly

depending on the cell type and driving mechanisms: a cell can proliferate on the order of once

every 12 hours to once every few days; EMT can occur over the course of hours, a few days [6],

or many days (e.g. 9-12 days [112]); the rate of mechanical relaxation is faster than the rate of

proliferation and EMT, with η/k ≈ 5–16 minutes being a typical experimental value [28]; and a

typical experimental value for the resting cell length being a ≈ 10µm [68].

5.4.1 Cell-length-independent proliferation and chemically-independent EMT

The simplest model is chemically-independent cell detachment of the boundary cell at a con-

stant rate, ω, with cell-length-independent proliferation for each cell at a constant rate, β (Figure

5.2(a),(b)). It is useful to first examine this problem with the continuum model. Conservation of

mass (Equation (5A.1.1)) gives a simple ordinary differential equation for the evolution of N(t),

dN(t)

dt
= βN(t)− ω, with solution N(t) =

ω

β
+

(
N(0)− ω

β

)
exp(βt). (5.4.1)

Then, depending on the initial number of cells, N(0), and the critical cell number, ω/β, there

are three possible long-term outcomes: i) N(t) → 0 in finite time, which we refer to as extinc-

tion, when N(0) < ω/β ; ii) N(t) remains constant for all t when N(0) = ω/β; iii) N(t)→∞ as

t → ∞ when N(0) > ω/β. It is clear from Equation (5.4.1) that in all cases mechanical inter-

actions do not influence N(t). However, each cell mechanically relaxes towards its equilibrium

length as N(t) evolves over time. To capture the evolution of the tissue length, L(t), and cell

density, q(x, t) we solve the full continuum model, governed by Equations (5.3.8)-(5.3.10) and
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(5.3.11) (Figure 5.3). The total number of cells which detach grows linearly with time at rate

ω for chemically-independent EMT when the tissue is not close to extinction, and plateaus if

extinction occurs (Figure 5A.4).

(b)
P(l)

l

β

a

(a)

ω(c)

c
ω

Cell detachment rate dependent on chemical concentration, c.

Proliferation rate dependent on cell length, l.
C

ω
(1-ϕ)

Figure 5.2: Cell detachment driven by chemically-dependent EMT and proliferation mechanisms. (a)
Cell detachment mechanisms: cell detachment at a constant rate ω independent of chemical concen-
tration (black); cell detachment at a constant rate ω/(1 − φ) when the concentration, c, is above a
concentration threshold, C (red). (b) Cell-length-dependent proliferation mechanisms: independent of
cell length at rate β (black); linearly dependent on cell-length (blue) defined by ensuring P (0) = 0 and
P (a) = β. In this main manuscript we set ω = 0.1, φ = 0.9, C = 500 and β = 0.0025, and vary φ in
supplementary material.

In general, the solution of the continuum model provides an accurate approximation for the

evolution of N(t), L(t) and q(x, t) when compared to appropriately averaged quantities from

many discrete realisations (Figures 5.3, 5A.5-5A.8). This correspondence between the dis-

crete and continuum model holds provided that the rate of mechanical relaxation, determined

by the ratio of cell stiffness to drag coefficient, k/η, is sufficiently fast relative to the rate of

cell proliferation, see Section 3.3 of Chapter 3 [158]; and that N(t) is sufficiently large to de-

fine a continuum, see Supplementary Material 5A.4.4. However, when N(0) is close to ω/β

the behaviour of the discrete and the continuum model may differ. Extinction behaviour of the

continuum model is deterministic and solely determined by N(0), whereas stochastic effects

in the discrete model imply that different realisations for the same N(0) may sometimes result

in extinction and sometimes in unbounded growth (Figures 5.3(c), Equation (5.3.7)) [220]. To

quantify this difference between the models, we simulate many identically-prepared realisa-

tions of the discrete model and calculate the survival probability of the tissue: the probability
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that an individual realisation is not extinct at a certain time. By comparing the survival prob-

ability of the tissue from the discrete and continuum models for a range of N(0), Figure 5.4

shows that when N(0) is close to ω/β and when N(0) is close to extinction, results from the

continuum model may not reflect the behaviour of individual discrete realisations.
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Figure 5.3: Chemically-independent cell detachment at a constant rate with a cell-length-independent
proliferation mechanism. (a)-(b) Kymographs showing evolution of cell boundaries (black curves, note
bifurcations when cells divide) for one discrete realisation with cell density, q(x, t), colouring for (a)
N(0) = 20 and (b) N(0) = 60. Note domain size in (b) is double that of (a). (c)-(d) Three initial cell
populations starting at mechanical equilibrium, L(0) = N(0)a. For N(0) = 20, 60 the average of 2000
discrete realisations (blue) are compared with the continuum model (green). For N(0) = ω/β = 40, 10
discrete realisations (grey) are compared with the continuum model (green). (c) Evolution of number of
cells, N(t). (d) Evolution of tissue length, L(t). Mechanical parameters: k = 1, a = 0.1, η = 1.
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Figure 5.4: Survival probability of the tissue, S, for the cell-length-independent proliferation mechanism
and chemically-independent cell detachment with N(0) = 1, 2, . . . , 80. Comparison between the deter-
ministic continuum model (red solid line), and the average of 2000 realisations of the stochastic discrete
model (shading). Here, w/β = 40.
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5.4.2 Cell-length-dependent proliferation and chemically-independent EMT

With a constant cell-length-independent proliferation rate, N(0) determines the long-term so-

lution of the continuum model, whereas with cell-length-dependent proliferation we must also

consider the initial cell lengths, li(0), resting cell length, a, and the ratio of cell stiffness to

drag coefficient, k/η. If we consider a linear proliferation mechanism P (li) = βli/a, shown

in Figure 5.2(b), then the critical tissue length is ωa/β (Equation (5.3.7)). Therefore in this

case mechanical interactions between the cells are important. Parameter combinations that

lead to extinction with cell-length-independent proliferation may now grow without bound with

cell-length-dependent proliferation (Section 5A.4.3). Similarly, parameter combinations that

lead to unbounded growth with cell-length-independent proliferation may now lead to extinc-

tion with cell-length-dependent proliferation. Further, the model predicts that compressed tis-

sues can go extinct faster (Figure 5.5(a),(c),(e)) than stretched tissues (Figure 5.5(b),(d),(f)).

Good agreement between the continuum model and appropriately averaged quantities from

many discrete realisations is also observed when considering cell-length-dependent prolifera-

tion (Supplementary Material 5A.4.7).

When we consider cell-length-dependent proliferation, the long term outcome of the model

depends upon the mechanical properties, k/η, and rate of cell proliferation and detachment. In

general, when k/η is large compared to β, the outcome of the model is similar to the simpler

cell-length-independent proliferation case. As before, the solution of the continuum model is

a good approximation of appropriately averaged data from the discrete model, except when

N(t) is low (Figure 5.5). However, whereas for cell-length-independent proliferation stochastic

effects are important when the initial number of cells N(0) is close to ω/β, for cell-length-

dependent proliferation stochastic effects are important whenever the current tissue length,

L(t), is close to the critical tissue length, ωa/β, as the epithelial tissue may go extinct in some

realisations while the epithelial tissue may grow in other realisations (Supplementary Material

5A.4.3). As we are considering chemically-independent EMT the total number of cells which

detach grows linearly with time at rate ω when the tissue is not close to extinction (Figure 5A.4).
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Figure 5.5: Chemically-independent cell detachment at a constant rate with a linear cell-length-
dependent proliferation mechanism. Two initial cell populations with N(0) = 20, the first uniformly
compressed with L(0) = 1 and the second uniformly stretched with L(0) = 4. (a)-(b) Kymographs with
density, q(x, t), colouring. (c)-(f) The average of 2000 discrete realisations (blue) are compared with the
continuum model (green). (c)-(d) Evolution of total cell number, N(t). (e)-(f) Evolution of tissue length,
L(t). Mechanical parameters: k = 1, a = 0.1, η = 1. Critical tissue length is ωa/β = 4.
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5.4.3 Chemically-dependent EMT with small diffusivity

We now consider a general EMT-inducing chemical, with TGF-β being one such example of

many candidate signalling molecules. As different EMT-inducing chemicals may have differ-

ent diffusivities, we will consider a range of possible diffusivities from a very small diffusivity

to assuming the chemical in the tissue is in diffusive equilibrium at all times. To begin, we

assume very small diffusivity and cell-length-independent proliferation. Assuming that the tis-

sue initially contains no chemical, the chemical is provided to the boundary cell only, and

small diffusivity, then the chemical is mostly concentrated in the boundary cell. To compare

the chemically-dependent cell detachment model with the chemically-independent cell detach-

ment model (Section 5.4.1) we choose parameters so that the average rate of cell detach-

ment is the same in both models, provided the boundary cell is close to its resting cell length.

Chemically-dependent cell detachment is a two-step process: i) the boundary cell gains an

invasive phenotype when its chemical concentration is above the chemical threshold, C, ii) the

boundary cell detaches. So we introduce a parameter φ ∈ [0, 1] which defines the ratio of the

average time in process i) as φ/ω and the average time in process ii) as (1 − φ)/ω (Figure

5.2). Note that φ = 0 corresponds to the chemically-independent model we explore in Sections

5.4.1-5.4.2. As before, the total number of cells which detach grows linearly with time at rate ω

when the tissue is not close to extinction (Figure 5A.4).

We find that agreement between results from the discrete model and corresponding contin-

uum model is not as accurate as before for large values of φ (Figures 5.6(a),(d),(g) for φ = 0.9,

Supplementary Material 5A.4.5). In the discrete model we assume that a constant number

of molecules of the chemical are supplied to the boundary cell (Equation (5.3.6)), to mimic

a chemical diffusing in from the external environment, and assume that the concentration in

every cell is well-mixed. However, for low diffusivities, here D = 10−5, the well-mixed assump-

tion is not valid. So the rate of cell detachment, ω(cN (t)), should be updated to account for

intracellular chemical concentration gradients. In contrast to the discrete model, the continuum

model does capture intracellular concentration gradients and the rate of cell detachment is de-

termined by c(L(T ), t), which is the concentration at the right edge of the boundary cell. With

low diffusivity, the chemical concentration is localised to L(t) in the continuum model, rather

than spread throughout the cell, so the continuum model reaches the concentration threshold

faster than realisations of the discrete model. This explains the difference in Figures 5.6(d),(g).

When φ is small or diffusivity is increased these differences are smaller (Supplementary Mate-

rial 5A.4.6,5.4.4).
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5.4.4 Chemically-dependent EMT with higher diffusivity

Higher chemical diffusivity results in the boundary cell having a lower chemical concentration,

on average, than the same simulation with lower chemical diffusivity. This means that the

time for the first cell to undergo EMT and detach increases (Figures 5.6(b),(c)). The delay

of the first cell detachment can be sufficient to result in a transient rise in total cell number.

However, as diffusivity is high the chemical concentration inside internal cells is close to the

chemical concentration inside the boundary cell. Therefore, after the first cell detaches the

new boundary cell may already be above or close to the concentration threshold, and hence

quickly gains the invasive phenotype. This can lead to a rapid sequence of cell detachments,

which was not seen with the models in the previous sections (Figures 5.6(b),(c), 5A.4(e)-(g)).

Results in Figures 5.6(e),(f),(h),(i) show good agreement between the continuum model

and the appropriately averaged quantities from many discrete realisations. The difference in

Figures 5.6(e),(h) for t ≥ 250 is due to low N(t) near extinction (Section 5.4.1, Supplementary

Material 5A.4.4). The difference in Figures 5.6(f),(i) at t ≥ 200 is due stochastic effects in the

discrete model, including the number of cells and tissue length. These are more prominent for

D = 1 (Figures 5.6(f),(i)) in comparison to D = 10−3 (Figures 5.6(e),(h)) due to the increased

time to reach the concentration threshold (Supplementary Material 5A.4.5).

Special cases assuming the chemical in the tissue is at diffusive equilibrium at all times and

instantaneous mechanical relaxation result in four possible behaviours (Supplementary Mate-

rial (5A.5)): unbounded tissue growth without EMT and cell detachment; unbounded tissue

growth with some EMT; eventual tissue homeostasis and constant EMT; and eventual tissue

extinction due to EMT.
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Figure 5.6: Increasing diffusion delays first EMT. Cell detachment driven by chemically-dependent EMT
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5.5 Conclusion

In this work we seek to explore how mechanical interactions influence the evolution of an ep-

ithelial tissue. Using our mathematical model, we ask when do tumours grow or shrink, and

how mechanical interactions and an EMT-inducing chemical could influence the rate of cell

detachment. Starting with a stochastic cell-based discrete model describing mechanical relax-

ation, cell-length-dependent proliferation, and cell detachment driven by chemically-dependent

EMT, we derive the corresponding deterministic continuum description which takes the form of

a novel nonlinear free boundary problem. In contrast to previous free boundary models we de-

rive the boundary condition from cell-level biological processes and incorporate EMT. Both the

discrete and continuum models useful information: discrete models show the important role

of stochastic effects while continuum models help classify possible behaviours. Our results

show good agreement between the continuum model and appropriately averaged quantities

from many discrete realisations. However, as can be expected, there are occasions when the

deterministic continuum model does not capture the fact that, due to stochastic proliferation

and EMT in the discrete model, different identically prepared individual discrete realisations

may result in different long-term behaviour.

Our models suggest that the coupling of mechanical interactions with EMT is important,

can change the probability of long-term extinction significantly, and give rise to different rates

of cell detachment [12, 187]. Using our model we postulate that to prevent cell detachment

driven by EMT and delay the start of the metastatic cascade, one could chemically alter the

speed of mechanical relaxation to encourage the tissue length to increase and hence cause

the EMT-inducing chemical concentration to decrease. However, if the tissue length increases

then proliferation may be more likely and the number of cancer cells in primary tumour would

increase, which is also not desirable. Therefore, there is a delicate trade off between pro-

liferation and EMT that should be considered when seeking to prevent cancer development.

Furthermore, the model predicts that if EMT is delayed then the tissue may rapidly collapse due

to many cells detaching in quick succession, which is undesirable as it may encourage metas-

tasis. In contrast, for wound healing we may prefer cell-detachment driven by EMT and more

proliferation to encourage the wound to heal faster. It will be useful to explore these ideas by

extending this model to track individual cells or clusters of cells [26] that detach from the tissue

in a two-regime model [216] or multi-organ model [69, 70], and incorporating mesenchymal-

epithelial transitions (MET) [84, 102, 115]. Furthermore, the time taken for a cell to proliferate

can be on the order of once every 12 hours to once every few days and EMT can occur over

the course of hours, a few days [6], or many days (e.g. 9-12 days [112]), depending on the cell
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type and driving mechanisms. Therefore, the critical cell number ω/β and critical tissue length

ωa/β µm we consider in this work are of a similar order of magnitude to that expected in vitro

and may be interesting to test experimentally.

The mathematical framework that we develop here, and in related studies (Chapters 2,

3, and 4, [19, 157–159, 225]), is well-suited to incorporate additional biological mechanisms

and explore different modelling assumptions. One modelling assumption we could change

would be to allow the EMT-inducing chemical to diffuse across the boundary at the rear of

the tissue, which may prevent a build up of chemical. Introducing intracellular diffusion in the

discrete model would also resolve the issue around the well-mixed assumption not being valid

for low diffusivities. We also assume, to illustrate a potential role for mechanochemical cou-

pling, that a single chemical drives EMT. In reality, many biological processes at the level of

proteins, mRNAs, and miRNAs occur and it may be interesting to incorporate regulatory net-

works which govern these processes into each cell in the discrete model [137, 226]. While

linear diffusion of the EMT-inducing chemical between cells is arguably the simplest approach

to include chemical transport and some experimental evidence exists for intercellular chemical

transport [113], other mechanisms may be more biologically realistic, such as chemicals dif-

fusing externally and being uptaken by cells [25] and cell adhesion regulated by interactions

between E-cadherin and β-catenin [187]. It is an interesting question to ask whether other

transport mechanisms are well approximated by the linear diffusion model we consider here.

The one-dimensional approach taken in this work has many advantages in its predictive

power, interpretability, and relative computational simplicity in comparison to two- or three-

dimensional models. Furthermore, cell-length-dependent proliferation may be thought of as an

approximation for cell-volume-dependent proliferation which occurs for cells that move in three-

dimensional environments. However, real cells can also spread without changing volume, so it

may be beneficial to explore the role of the cell cycle in this one-dimensional framework [234]. A

significant extension of this work would be to consider higher dimensions. The discrete model

could be extended by considering a cell-centre or vertex model which introduces questions

regarding cell shape and how neighbours can be identified, along with increased computational

expense [67, 175, 179]. A corresponding continuum model in higher dimensions is less clear.

The one-dimensional model enforces an ordering of neighbouring cells, which is important

when deriving a continuum model [68, 163]. However, in higher dimensions cells can change

their neighbours which poses significant challenges [68,163]. We leave this extension for future

consideration.
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5A.1 Continuum model: Evolution of free boundary equation deriva-

tion

The discrete model allows for cells to detach at the free boundary, x = L(t). In the continuum

model this corresponds to loss of tissue material at a moving interface [34]. By considering

conservation of mass for the total number of cells, N(t), the rate of change of N(t) due to

proliferation and invasion is

dN(t)

dt
=

∫ x=L(t)

x=0
q(x, t)P

(
1

q(x, t)

)
dx︸ ︷︷ ︸

growth due to proliferation

− ω(c(L(t), t).︸ ︷︷ ︸
loss due to cell detachment

(5A.1.1)

The rate of change of N(t) can also be written in terms of the cell density, q(x, t), as follows

dN(t)

dt
= d

dt

(∫ x=L(t)
x=0 q(x, t) dx

)
. (5A.1.2)

Differentiating the right hand side of Equation (5A.1.2) with respect to t and applying Equation

(5.3.8) for the cell density and Equation (5.3.9) for the boundary condition at x = 0 gives

dN(t)

dt
= dL(t)

dt q(L(t), t)− 1
η
∂f(L(t),t)

∂x (5A.1.3)

+
∫ x=L(t)
x=0 q(x, t)P

(
1

q(x,t)

)
dx.

Equating (5A.1.1) and (5A.1.3) and rearranging we obtain evolution of the free boundary equa-

tion

dL(t)

dt
=

1

q(L(t), t)

[
1

η

∂f(L(t), t)

∂x
− ω(c(L(t), t)

]
. (5A.1.4)

Substituting Equation (5.3.10) into Equation (5A.1.4) we can obtain a different form for the

evolution of the free boundary equation as

dL(t)

dt
=

k(s(t), t)

η

[
a(L(t), t)− 1

q(L(t), t)
− 1

2q(L(t), t)3

∂q(x, t)

∂x

]
︸ ︷︷ ︸

mechanical relaxation

(5A.1.5)

− ω(c(L(t), t)

q(L(t), t)
.︸ ︷︷ ︸

loss due to cell detachment
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5A.2 Numerical methods: Discrete model

The key technical challenge to overcome to numerically simulate the discrete model concerns

how to implement linear chemical diffusion in an evolving population of cells with variable cells

lengths. This is the primary focus of the first half of this section. Previous models have imple-

mented diffusion on growing domains [20, 48, 49, 203, 207–209, 252], however, what is unique

to this work is that we are interested in the chemical concentration inside individual cells when

the positions of cell boundaries are known and evolve in time. Furthermore, previous studies

tend to consider uniform growth throughout the tissue whereas here, due to mechanical inter-

actions and proliferation, we have non-uniform growth throughout the tissue. As we will show

these complications requires a new numerical method.

To model the diffusion of molecules of a chemical we have a choice between microscopic or

mesoscopic individual-based models or macroscopic population-based models. Microscopic

individual-based models are often posed as a population of particles undergoing Brownian

motion. Mesoscopic individual-based models are often posed as a population of particles

undergoing a random walk on a lattice or as a position-jump process on a lattice. However,

individual-based models tend to be more computationally expensive than population-level mod-

els and can be mathematically intractable. Macroscopic approaches can be simpler to write

down and are often easier and faster to simulate for a large number of particles.

Macroscopically, linear diffusion of particles on a fixed domain, 0 < x < L, can be modelled

with the following classical partial differential equation

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, 0 < x < L, (5A.2.1)

where c(x, t) is the particle density, or equivalently the chemical concentration, and D is the

macroscopic diffusion coefficient. Whereas on a domain whose length, L(t), evolves in time,

conservation of mass arguments and applying Reynolds transport theorem gives the following

partial differential equation for the evolution of c(x, t), [20]

∂c(x, t)

∂t
+

∂

∂x
(u(x, t)c(x, t)) = D

∂2c(x, t)

∂x2
, 0 < x < L(t), (5A.2.2)

where u(x, t) is a velocity field prescribed by domain growth [20, 48, 49, 252]. In this work,

Equation (5A.2.2) is the same as Equation (5.3.13) in the main manuscript with u(x, t) =

1/(ηq(x, t)) ∂f(x, t)/∂x determined by mechanical interactions between the cells.

Previous studies have demonstrated that a stochastic individual-based model incorporating
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domain growth, taking the form of a position-jump model on a uniform lattice, is equivalent to

the continuum model in Equation (5A.2.2) [20]. However, domain growth was implemented by

instantaneous doubling and dividing of underlying lattice sites which always results in a uniform

lattice, corresponding to all cells have the same length at all times. This is not the case for this

work. We obtain a non-uniform lattice, as cell lengths vary due to the effects of mechanical

interactions between cells and proliferation. Therefore, to discuss the method we will focus on

a non-uniform lattice and initially assume that positions of the cell boundaries are fixed and

known.

To model diffusion on a non-uniform lattice Yates et al. [252] make clear that one must be

careful, and suggest two methods which we refer to as method A and method B. To explain

the methods we first state the two key sets of points: i) positions of cell boundaries, xi for

i = 1, 2, . . . , N + 1 (represented as circles in schematics in Figures 5.1,5A.1-5A.3); ii) resident

points, yi for i = 1, 2, . . . , N , satisfying xi < yi < xi+1, which defines the location in cell i

where the particles of the chemical are considered to be positioned (represented as crosses in

schematics in Figures 5A.1-5A.3). In method A (Figure 5A.1(a)), Yates et al. [252] assume the

resident points, yi, are chosen first and then the cell boundaries, xi, are defined in a Voronoi

neighbourhood sense: a point is in cell i if it is closer to the resident point associated with cell

i, given by yi, rather than any other resident point yj . They show this method can be used

to accurately model linear diffusion due to the Voronoi partition (see Supplementary Material

Section 1 of Yates et al. [252]). However, in this work the positions of the cell boundaries are

already known from the mechanical interactions (Equations (5.3.1)-(5.3.3)) so we cannot use

method A and instead consider method B. In method B (Figure 5A.1(b)), Yates et al. [252]

first prescribe the position of the cell boundaries, xi, which is what we require, and then they

choose the resident points to be the position of the centre of cell i, so yi = (xi + xi+1)/2. They

show this method does not accurately model linear diffusion as there is not a Voronoi partition.

When all cells are the same size, resulting in a uniform lattice, methods A and B are equivalent.

Before proceeding with our new method, which combines and extends methods A and

B, we briefly discuss the underlying microscopic diffusion model and how it relates to the

mesoscale position-jump process model of diffusion [252]. In the microscopic model of diffu-

sion, the position of an individual particle which undergoes Brownian motion is governed by a

stochastic differential equation,

dX(t) =
√

2D dWt, (5A.2.3)

where dWt is a standard Wiener process and D is the macroscopic diffusion coefficient. For



CHAPTER 5A. SUPPLEMENTARY MATERIAL 182

(a) Method A

Method B(b)

x = 0 x = L

x = 0 x = L
ii) Define cell boundaries based on a Voronoi partition

i) Define resident points

x = 0 x = L

x = 0 x = L
ii) Define resident points as cell centres

i) Define cell boundaries

y1 y2 y3 y4 y5x1 x2 x3 x4 x5 x6

Interval-Voronoi method(c)

x = 0 x = L

x = 0 x = L
ii) Choose resident points to define a Voronoi partition
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Figure 5A.1: Different methods to model linear diffusion for variable cells sizes. (a) Method A: define
resident points, yi, first and then define cell boundaries, xi, to form a Voronoi partition. (b) Method B:
define cell boundaries first and then define resident points at the cell centres. (c) New Interval-Voronoi
method: define cell boundaries first and then choose resident points to define a Voronoi partition. Circles
represent cell boundaries, xi, and crosses represent resident points, yi. Shown for N = 5 cells.
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the mesoscale position-jump process model of diffusion we seek the rates at which a particle

at resident point, yi, moves to the neighbouring left or right resident points at yi−1 or yi+1,

respectively. These transition rates, T±i , can be found by initialising a particle at yi solving a

first passage time problem on the domain yi−1 < x < yi+1 [190,252]. Then the transition rates

are [59,252]

T+
1 = 2D

(y2−y1)(y1+y2) , (5A.2.4)

T+
i = 2D

(yi+1−yi)(yi+1+yi−1) i = 2, 3, . . . , N − 1, (5A.2.5)

T−i = 2D
(yi−yi−1)(yi+1+yi−1) i = 2, 3, . . . , N − 1, (5A.2.6)

T−N = 2D
(yN−yN−1)(2(L(t)−yN )+yN−yN−1) , (5A.2.7)

where D is the macroscopic diffusion coefficient. When all cells are the same length, l, these

transition rates simplify to D/l2.

To accurately model linear diffusion in our work we combine and extend methods A and

B. Specifically, we first define the positions of the cell boundaries, xi, and then we choose the

resident points, yi, so that the position of the bisection of neighbouring resident points is the

position of a cell boundary, i.e. choose yi such that (yi+yi+1)/2 = xi for i = 2, 3, . . . , N (Figure

5A.1(c)). This results in a Voronoi partition on the set of yi, where the edges of the Voronoi

partition coincide with the cell boundaries. We now explain how to choose the yi in such a

manner by following Figure 5A.2. We assume an initial cell configuration (Figure 5A.2(a)) and

will work from the leftmost cell to the rightmost cell. Initially, the resident point of the leftmost

cell could be placed anywhere in this cell, which we call the possible region of the first cell and

show in green (Figure 5A.2(b)). Next we reflect the possible region of the first cell about the

right boundary of the first cell, and colour this yellow (Figure 5A.2(c)). Then intersecting the

reflected possible region of the first cell with the interval occupied by the second cell gives the

possible region for the second cell, which we indicate in green (Figure 5A.2(d)). We repeat

until reaching the rightmost cell (Figure 5A.2(e)-(h)). Given possible regions for all of the cells

we choose the resident point of the rightmost cell to be the midpoint of the possible region of

the rightmost cell (Figure 5A.2(i)). Then reflecting the resident point about the left boundary of

the rightmost cell we obtain the location of the resident point of the penultimate cell. We repeat

until we have obtained the resident points for all cells (Figure 5A.2(j)). This method gives

us a set of resident points which can be used to accurately model linear diffusion. However,

this method only works when a Voronoi partition can be defined, which occurs when cells are

similar lengths.
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Figure 5A.2: Schematic for Interval-Voronoi method for cells of similar size. Circles represent cell
boundaries, xi, crosses represent resident points, yi, and green represent possible regions for a cell
where a resident point could be placed. Details discussed in the text.

Depending on the configuration of the positions of the cell boundaries it is not always pos-

sible to define the resident points as above. For example, following Figure 5A.3, the possible

regions for the first three cells can be defined as before (Figure 5A.3(a)-(f)). However, when

we reflect the possible region of the third cell and intersect this with the interval occupied by

the fourth cell we obtain an empty set. Therefore, there is no location in the third cell where

we will be able to place a resident point to define a Voronoi partition. To resolve this problem,

we now divide the third cell into two compartments (Figure 5A.3(h)). To do so, we first assume

that the current possible region for the third cell is now the possible region for the left com-

partment of the third cell. Then, we choose the position of the compartment boundary which

divides the cell (red-dashed line in Figure 5A.3(h)) so that the position of the right boundary

of the right compartment of the third cell is equal to the position of the right boundary of the

third cell, the possible region of the left compartment of the third cell does not overlap with the

possible region of the right compartment of the third cell, and the possible region of the right

compartment of the third cell is maximised. In Figure 5A.3(h) this corresponds to dividing the

cell into two compartments of equal length. We can then proceed as before (Figure 5A.3(i)-

(j)). We can then define resident points for each compartment and subsequently for each cell

(Figure 5A.3(k)). When numerically simulating the discrete model, as described further be-

low, we update the chemical concentration using a well-mixed assumption at each time step
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so this method does not result in intracellular chemical concentration gradients. This a valid

approximation when D is sufficiently large.

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)

x = 0 x = L(t)
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(f)
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(h)

(i)

(j)

(k)

1 2 3 4 5

Figure 5A.3: Schematic for Interval-Voronoi with compartments per cell. This method is required when
a Voronoi partition cannot be defined on the initial cell configuration, which occurs when cells lengths
are not similar. Circles represent cell boundaries, xi, crosses represent resident points, yi, green rep-
resent possible regions for a cell where a resident point could be placed, red-dashed represents the a
compartment boundary within a cell. Details discussed in the text.

Being able to define a Voronoi partition is necessary [252] but results from simulations

show that it is not always sufficient to accurately model linear diffusion. The distances be-

tween neighbouring resident points should also be the same order of magnitude throughout

the population. If we suppose the resident points are yi for i = 1, 2, . . . , N then if

log10 (max({yi+1 − yi : i = 1, 2, . . . , I − 1})) (5A.2.8)

− log10 (min({yi+1 − yi : i = 1, 2, . . . , N − 1})) < γ,

the distances between neighbouring resident points are approximately the same order and we

can proceed. The condition in Equation (5A.2.8) and the value γ = 0.8 were found to be good

choices for results in this work. If the condition in Equation (5A.2.8) is not satisfied we introduce
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a maximum compartment length equal to half of the minimum length of the current cell sizes.

Then for any cells whose length is greater than the maximum compartment length, we divide

those cells into compartments so that the maximum length of any compartment is less than

the maximum compartment length. We then determine the resident points as above.

The method described above, which we name the Interval-Voronoi method, can now be

used to accurately model linear diffusion on a fixed domain with variable cell lengths. In this

work, all of the cell boundaries, and consequently the length of the domain, L(t), are evolving

in time. However, when we numerically simulate a single realisation of the discrete model we

discretise time with a constant time step ∆t. Then for each time interval [t, t+ ∆t) we assume

the cell boundaries are fixed and the domain is fixed and apply the Interval-Voronoi method.

Further details are now shown.

Let us consider a single realisation of the discrete model. The epithelial tissue is initialised

with N cells each with cell stiffness k and resting cell length a. The position of each cell

boundary xi(t) for i = 1, 2, . . . , N is defined. Every cell in the tissue is prescribed with the

same proliferation mechanism and proliferation parameter, β. The chemical concentration is

initially set to zero in each cell. To simulate the model, we discretise time with a constant

time step ∆t. Then for each time interval [t, t + ∆t) we: i) update cell positions according

to mechanical interactions; ii) update the chemical concentrations in each cell; iii) implement

proliferation or cell detachment if it occurs.

We update the positions of each of the cell boundaries, xi(t), by integrating Equations

(5.3.1)-(5.3.3) using a forward Euler approximation,

x1 (t+ ∆t) = 0, (5A.2.9)

xi (t+ ∆t) = xi (t) +
∆t

η

[
k (xi+1 − xi − a) (5A.2.10)

−k (xi − xi−1 − a)

]
, i = 2, . . . , N − 1,

xN+1 (t+ ∆t) = xN+1 (t)− ∆t

η
k (xN+1 − xN − a) . (5A.2.11)

Next we seek to update the chemical concentration by applying the Interval-Voronoi method.

Using the updated positions of cell boundaries, xi(t+ ∆t) for i = 1, 2, . . . , N + 1, we determine

the resident points yi for i = 1, 2, . . . , N̂ . Then we can calculate the boundaries of compart-

ments x̂i for i = 1, 2, . . . , N̂ + 1, in a Voronoi neighbourhood sense, where N̂ ≥ N is the

number of resident points. If the Interval-Voronoi method requires at least one cell to be di-

vided into compartments then N̂ > N in order for a Voronoi partition to be defined. Then given

the resident points we determine the transition rates, T̂±i , in terms of compartment lengths,
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l̂i(t + ∆t) = x̂i+1(t + ∆t) − x̂i(t + ∆t). We now have the information required to update the

chemical concentration for the cells. First we update the chemical concentration for all com-

partments, which we denote as ĉi(t) for i = 1, 2, . . . , N̂ by integrating Equations (5.3.4)-(5.3.6)

using forward Euler approximations,

ĉ1(t+ ∆t) = ĉ1(t) + ∆t

[
1

l̂1(t+∆t)

(
T̂−2 ĉ2(t)l̂2(t+ ∆t)− T̂+

1 ĉ1(t)l̂1(t+ ∆t)

)]
(5A.2.12)

− ĉ1(t)

l̂1(t+∆t)

(
l̂1(t+ ∆t)− l̂1(t)

)
ĉi(t+ ∆t) = ĉi(t) + ∆t

[
1

l̂i(t+∆t)

(
T̂+
i−1ĉi−1(t)l̂i−1(t+ ∆t) (5A.2.13)

−
(
T̂−i + T̂+

i

)
ĉi(t)l̂i(t+ ∆t) + T̂−i+1ĉi+1(t)l̂i+1(t+ ∆t)

)]
− ĉi(t)

l̂i(t+∆t)

(
l̂i(t+ ∆t)− l̂i(t)

)
, i = 2, 3, . . . , N̂ − 1,

ĉN̂ (t+ ∆t) = ĉN (t) + ∆t

[
1

l̂N (t+∆t)

(
T̂+
N−1ĉN−1(t)l̂N−1(t+ ∆t)− T̂−N ĉN (t)l̂N (t+ ∆t)

)]
− ĉN̂ (t)

l̂N̂ (t+∆t)

(
l̂N̂ (t+ ∆t)− l̂N̂ (t)

)
+ S∆t

lN̂ (t+∆t) . (5A.2.14)

If the Interval-Voronoi method does not introduce any compartments per cell, i.e. if N̂ = N ,

then T̂±i = T±i , l̂i(t + ∆t) = li(t + ∆t), and ĉi(t) = ci(t). Hence, if N̂ = N , using Equa-

tions (5A.2.13)-(5A.2.14), we directly determine the chemical concentrations ci(t + ∆t) for

i = 1, 2, . . . , N and we can proceed to incorporating if a cell proliferation or detachment event

occurs in the time step. However, if N̂ > N before proceeding we apply the well-mixed as-

sumption to each cell. Specifically, if the Interval-Voronoi method introduces j compartments

into cell i with concentrations ĉk(t + ∆t), ĉk+1(t + ∆t), . . . , ĉk+j−1(t + ∆t) then the chemical

concentration of cell i is set to be ci(t+ ∆t) = (1/li)
∑j

r=1 ĉi(t+ ∆t)l̂i(t+ ∆t).

Next, given the cell positions and chemical concentrations at time t + ∆t, we determine

whether a cell proliferation event or a cell detachment event occurs during the time interval

[t, t + ∆t). Analogous to Murphy et al. [158] we proceed using rejection sampling [74] where

we generate three independent random numbers from a uniform distribution, r1 ∼ U [0, 1], r2 ∼
U [0, 1], r3 ∼ U [0, 1]. Then a cell event, which could be either a proliferation event or a cell

detachment event, occurs when

r1 < ω(cN )∆t+

N(t)∑
i=1

P (lNi )∆t. (5A.2.15)
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Given that a cell event occurs, a proliferation event occurs if

r2 <

N(t)∑
i=1

P (lNi )

N(t)∑
i=1

P (lNi ) + ω(cN )

. (5A.2.16)

Otherwise we have a cell detachment event and we remove the boundary cell. If a proliferation

event occurs, to determine which cell is proliferating we find the index j which satisfies

j∑
i=1

P (lNi )

N(t)∑
i=1

P (lNi )

< r3 ≤

j+1∑
i=1

P (lNi )

N(t)∑
i=1

P (lNi )

. (5A.2.17)

We then divide the parent cell into two equally sized daughter cells with the same chemical

concentration and mechanical properties as the parent cell.

We repeat the above steps for each time step until the final time. This method requires

that at most one cell event can occur within each time step so ∆t should be chosen sufficiently

small.
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5A.3 Numerical methods: Continuum model

The continuum model is solved numerically using a boundary fixing transformation [120], finite

difference approximations, and the Newton-Raphson method [44] with adaptive time stepping.

Full details now follow.

For completeness, we rewrite the governing equations for the cell density, q(x, t), from

Equation (5.3.8) and chemical concentration, c(x, t), from Equation (5.3.12), where we have

used the definitions of f(x, t), and u(x, t) from Equation (5.3.13),

∂q(x, t)

∂t
= −1

η

∂2

∂x2

[
k

(
1

q(x, t)
− a
)]

+ q(x, t)P

(
1

q(x, t)

)
, 0 < x < L(t),(5A.3.1)

∂c(x, t)

∂t
+

∂

∂x

(
1

ηq(x, t)

∂

∂x

[
k

(
1

q(x, t)
− a
)]

c(x, t)

)
= D

∂2c(x, t)

∂x2
, 0 < x < L(t),(5A.3.2)

These governing equations are solved with the following boundary conditions from Equations

(5.3.9), (5.3.10), (5.3.14), (5.3.15),

∂

∂x

[
k

(
1

q(0, t)
− a
)]

= 0, (5A.3.3)

−k
(

1

q(L(t), t)
− a
)

= 1
2q(L(t),t)

∂
∂x

[
k
(

1
q(L(t),t) − a

)]
, (5A.3.4)

∂c(0, t)

∂x
= 0, (5A.3.5)

D
∂c(L(t), t)

∂x
= S, (5A.3.6)

and the boundary position, L(t), evolves according to Equation (5.3.11) and we can apply

Equation (5A.3.4) to give

dL(t)

dt
= −2k

η

(
1

q(L(t),t) − a
)
− ω

q(L(t),t) . (5A.3.7)
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Equations (5A.3.1)-(5A.3.7) form a moving boundary problem for coupled non-linear partial

differential equations. To proceed we apply a standard boundary fixing transformation [120] by

setting ξ = x/L(t) to transform the evolving domain 0 ≤ x ≤ L(t) to a fixed domain 0 ≤ ξ ≤ 1.

Equations (5A.3.1)-(5A.3.7) then become

∂q(ξ, t)

∂t
= − 1

L(t)2η
∂2

∂ξ2

[
k
(

1
q(ξ,t) − a

)]
+ q(ξ, t)P

(
1

q(ξ,t)

)
(5A.3.8)

+ ξ
L(t)

dL(t)
dt

∂q(ξ,t)
∂ξ , 0 < ξ < 1,

∂c(ξ, t)

∂t
= − 1

L(t)2
∂
∂ξ

(
1

ηq(ξ,t)
∂
∂ξ

[
k
(

1
q(ξ,t) − a

)]
c(ξ, t)

)
+ D

L(t)2
∂2c(ξ,t)
∂ξ2

(5A.3.9)

+ ξ
L(t)

dL(t)
dt

∂q(ξ,t)
∂ξ , 0 < ξ < 1,

with the following boundary conditions

∂

∂ξ

[
k

(
1

q(0, t)
− a
)]

= 0, (5A.3.10)

−k
(

1

q(1, t)
− a
)

= 1
2q(1,t)

∂
∂ξ

[
k
(

1
q(1,t) − a

)]
, (5A.3.11)

∂c(0, t)

∂ξ
= 0, (5A.3.12)

D

L(t)

∂c(1, t)

∂ξ
= S, (5A.3.13)

and the boundary position, L(t), evolves according to

dL(t)

dt
= −2k

η

(
1

q(1,t) − a
)
− ω

q(1,t) . (5A.3.14)

Next, we discretise the domain 0 ≤ ξ ≤ 1 with a uniform mesh with spatial step ∆ξ and use

the subscript j = 1, 2, . . . , J to represent the index of the spatial nodes. We discretise time with

a uniform mesh with time step ∆t and use the superscript n = 1, 2, . . . , T to represent temporal

step. Second-order spatial derivatives are approximated by standard central differences. First-

order spatial derivatives are approximated by standard upwind differences. A standard implicit

finite difference approximation is used to approximate temporal derivatives.

Equation (5A.3.14) governing the evolution of L(t) becomes

Ln+1 = Ln +
−2k∆t

η

(
1

qnJ
− a
)
− ∆tω

qnJ
. (5A.3.15)

Finite difference approximations of the cell density equations give, for internal spatial nodes



CHAPTER 5A. SUPPLEMENTARY MATERIAL 191

j = 2, . . . , J − 1,

0 = −qn+1
j + qnj (5A.3.16)

− ∆t
η(Ln+1∆ξ)2

[
k

(
1

qn+1
j−1

− a
)
− 2k

(
1

qn+1
j

− a
)

+ k

(
1

qn+1
j+1

− a
)]

(5A.3.17)

+∆tqn+1
j P

(
1

qn+1
j

)
+ ξ∆t

2∆ξLn+1

(
Ln+1 − Ln

) (
qn+1
j+1 − qn+1

j

)
. (5A.3.18)

At ξ = 0, corresponding to spatial node 1, the cell density is updated with

0 = −k
(

1

qn+1
1

− a
)

+ k

(
1

qn+1
2

− a
)
. (5A.3.19)

At ξ = 1, corresponding to spatial node J , the cell density is updated with

0 =
1

2qn+1
J Ln+1∆ξ

[
k

(
1

qn+1
J

− a
)
− k

(
1

qn+1
J−1

− a
)]

+ k

(
1

qn+1
J

− a
)
. (5A.3.20)

To proceed we calculate the velocity at each node, given by

v1 =
1

∆ξηqn+1
1 (Ln+1)2

[
k

(
1

qn+1
2

− a
)
− k

(
1

qn+1
1

− a
)]
− ξ

Ln+1

Ln+1 − Ln
∆t

, (5A.3.21)

vj =
1

2∆ξηqn+1
i (Ln+1)2

[
k

(
1

qn+1
j+1

− a
)
− k

(
1

qn+1
j−1

− a
)]
− ξ

Ln+1

Ln+1 − Ln
∆t

, (5A.3.22)

j = 2, . . . , J − 1,

vJ =
1

∆ξηqn+1
J (Ln+1)2

[
k

(
1

qn+1
J

− a
)
− k

(
1

qn+1
J−1

− a
)]
− ξ

Ln+1

Ln+1 − Ln
∆t

, (5A.3.23)

where forward and backward differences applied at the left and right boundaries, respectively.

Considering the chemical concentration for internal nodes j = 2, 3, . . . , J − 1 and assuming
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vj ≥ 0 so that first order spatial derivatives are upwinded, finite difference approximations give

0 = −cn+1
j + cnj (5A.3.24)

+ ∆t
∆ξvj

(
cn+1
j − cn+1

j−1

)
−∆t cn+1

j
1

2η(Ln+1∆ξ)2

[(
1

qn+1
j+1

+ 1
qn+1
j

)(
k

(
1

qn+1
j+1

− a
)

+ k

(
1

qn+1
j

− a
))

(
1

qn+1
j

+ 1
qn+1
j−1

)(
k

(
1

qn+1
j

− a
)

+ k

(
1

qn+1
j−1

− a
))]

D∆t
(∆ξLn+1)2

(
cn+1
j−1 − 2cn+1

j + cn+1
j+1

)
.

Similarly, if vj < 0 upwinding is applied to the first order spatial derivative. At ξ = 0 we apply a

forward difference approximation to Equation (5A.3.12) governing the chemical concentration

which gives

0 = −cn+1
1 + cn+1

2 . (5A.3.25)

At ξ = 1 we apply a backwards difference approximation to Equation (5A.3.13) governing the

chemical concentration which gives

0 = −cn+1
J + cn+1

J−1 +
S∆ξLn+1

D
. (5A.3.26)

Equations (5A.3.15)-(5A.3.26) form a system of nonlinear algebraic equations for the cell

density, chemical concentration, and evolution of L(t). We solve these equations using the

Newton-Raphson method [44,158]. In each Newton-Raphson iteration we first update L(t), ac-

cording to Equation (5A.3.15), then the cell density, governed by Equations (5A.3.16)-(5A.3.20),

then the chemical concentration, governed by Equations (5A.3.24)-(5A.3.26). Newton-Raphson

iterations are performed at each time point until the infinity norm of the the difference between

successive estimates of {qn+1
1 , qn+1

2 , . . . , qn+1
J } and {cn+1

1 , cn+1
2 , . . . , cn+1

J } is below a specified

tolerance, ε. To ensure that the Newton-Raphson iteration converges we apply adaptive time

stepping. To implement adaptive time stepping we introduce a maximum number of iterations.

When the maximum number of iterations is reached without the tolerance being met we di-

vide the timestep by ten and repeat. Once the tolerance is met we reset the time step for

the next temporal node. In our results adaptive time stepping is important when the chemical

concentration first reaches the chemical threshold at L(t), and it reduces the computational

time required to obtain the numerical solution. We use the Thomas algorithm to solve the lin-

ear systems which arise from the Newton-Raphson method. To ensure all numerical results
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are grid-independent we set ∆ξ = 10−5, initially set ∆t = 10−3, set the maximum number of

iterations for each time step to ten, and set ε = 10−8.

Key algorithms used to generate results are available on Github.

https://github.com/ryanmurphy42/Murphy2020b.git


CHAPTER 5A. SUPPLEMENTARY MATERIAL 194

5A.3.1 Initial conditions

In this work, we refer to three types of initial conditions: compressed, mechanical equilibrium,

and stretched. Here, we state these for the discrete and continuum model.

In the discrete model we choose every cell to initially have the same length, li(0) =

L(0)/N(0). If li < a then each cell is compressed and the tissue is compressed. If li = a

then each cell is at its resting cell length and the tissue is at mechanical equilibrium. If li > a

then each cell is stretched and the tissue is stretched. The corresponding initial conditions in

the continuum model are obtained using q(x, 0) = N(0)/L(0) for 0 < x < L(0).
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5A.4 Additional results

5A.4.1 Counting the total number of cells that detach

We first defineM(t) as the total number of cells which have detached by time t. For chemically-

independent EMT, cell detachment occurs at a constant rate ω. Therefore, M(t) = ωt while

N(t) > 0, i.e. the total number of cells which have detached increases linearly with time while

the tissue still contains cells. If N(t) reaches zero then M(t) plateaus. In Figures 5A.4(a)-(d),

we show the good agreement between the results of the average of many discrete realisations

and M(t) = ωt. This holds for later times in Figure 5A.4(b) as the tissue does not go extinct.

In contrast for Figures 5A.4(a),(c),(d) M(t) eventually plateaus at later times due to extinction.

For chemically-dependent EMT and D = 10−5 in Figure 5A.4(e), M(t) is very similar to

the chemically-independent EMT case due to how parameters are chosen, as discussed in

Section 5.4.3. Also note that as φ = 0.9 in Figure 5A.4(e) the cells require some time to

reach the chemical threshold before detaching rapidly. Hence, we observe reduced noise for

chemically-dependent EMT with D = 10−5 in comparison to results for chemically-independent

EMT in Figures 5A.4(a)-(d). As φ→ 0 the noise in M(t) will increase, whereas for φ = 1 there

will be no noise in M(t). For chemically-dependent EMT with higher diffusivities of D = 10−2

and D = 1, Figures 5A.4(f),(g), respectively, cell detachment is initially delayed, then cells

detach rapidly until extinction occurs.
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Figure 5A.4: Evolution of total number of cells that detach, M(t), for examples presented in the main
manuscript. (a)-(b) Chemically-independent EMT and cell-length independent proliferation (from Sec-
tion 5.4.1). (c)-(d) Chemically-independent EMT and linear cell-length-dependent EMT (from Section
5.4.2). (e)-(g) Chemically-dependent EMT and cell-length-independent proliferation for (e) D = 10−5,
(f) D = 10−2, (g) D = 1 (from Section 5.4.3-5.4.4). The average of 2000 discrete realisations (blue) are
compared with M(t) = ωt (green).



CHAPTER 5A. SUPPLEMENTARY MATERIAL 197

5A.4.2 Cell-length-independent proliferation

In the main manuscript we present results for the evolution of N(t) and L(t) with k = 1 starting

with cells initially at mechanical equilibrium. In Figures 5A.6 and 5A.7 we present results for

k = 10 and tissues that are initially compressed or stretched. Good agreement is observed

between the continuum model and the average of many discrete realisations.

In Figures 5A.5 and 5A.8 we compare snapshots of the density, q(x, t), from the continuum

model to the average of many discrete realisations and observe good agreement. Differences

at the free boundary x = L(t) are a result of the length in each discrete realisation being

different due to the stochastic proliferation and cell detachment mechanisms.

(a) (b) t = 100 t = 200(c)t = 0

q q q
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0
x x x

0 3 60 3 60 3 6

Figure 5A.5: Density snapshots corresponding to N(0) = 60 in Figure 5.3. Cells are initially at their
resting cell lengths. The average of 2000 discrete realisations (blue) are compared with the continuum
model (green) at times (a) t = 0, (b) t = 100, (c) t = 200. Mechanical parameters: k = 1, a = 0.1, η = 1.
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Figure 5A.6: Cell-length-independent proliferation and chemically-independent cell detachment for
N(0) = 20 and k = 10 with initial conditions: (a),(d),(g) compressed, (b),(e),(h) mechanical equilibrium,
(c),(f),(i) stretched. (a)-(c) Kymographs with density, q(x, t), colouring. The average of 2000 discrete re-
alisations (blue) are compared with the continuum model (green). (d)-(f) Evolution of total cell number,
N(t). (g)-(i) Evolution of tissue length, L(t). Mechanical parameters: k = 10, a = 0.1, η = 1.
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Figure 5A.7: Cell-length-independent proliferation and chemically-independent cell detachment for
N(0) = 60 and k = 10 with initial conditions: (a),(d),(g) compressed, (b),(e),(h) mechanical equilibrium,
(c),(f),(i) stretched. (a)-(c) Kymographs with density, q(x, t), colouring. The average of 2000 discrete re-
alisations (blue) are compared with the continuum model (green). (d)-(f) Evolution of total cell number,
N(t). (g)-(i) Evolution of tissue length, L(t). Mechanical parameters: k = 10, a = 0.1, η = 1.
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Figure 5A.8: Density snapshots corresponding to Figure 5A.7. The average of 2000 discrete realisa-
tions (blue) are compared with the continuum model (green) at times t = 0, 100, 200 for initial tissue
lengths, L(0) = 3, 6, 12. Mechanical parameters: k = 10, a = 0.1, η = 1.



CHAPTER 5A. SUPPLEMENTARY MATERIAL 201

5A.4.3 Cell-length-dependent proliferation

Previously, with cell-length-independent proliferation starting with N(0) = 42 leads to un-

bounded growth in the continuum model, and mostly unbounded growth but sometimes ex-

tinction for realisations of the discrete model. Now we consider cell-length-dependent prolif-

eration, where the initial tissue length can influence the long-term behaviour. Here we also

assume chemically-independent cell detachment. Now with N(0) = 42, if the tissue is initially

compressed then extinction is more likely (Figure 5A.9a,c,e) whereas if the tissue is initially

stretched then the tissue is more likely to eventually grow without bound (Figure 5A.9(b),(d),(f)).

Good agreement is observed between the average of many discrete realisations and the con-

tinuum description with differences due to being close to extinction (Figures 5A.9(a),(c),(e))

and due to some discrete realisations crossing the critical length threshold while others do not

(Figures 5A.9(b),(d),(f)).
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Figure 5A.9: Chemically-independent cell detachment with linear cell-length-dependent proliferation
mechanism. Two initial cell populations with N(0) = 42, the first uniformly compressed with L(0) = 2
and the second uniformly stretched with L(0) = 10 (a)-(b) Kymographs with density, q(x, t), colouring.
The average of 2000 discrete realisations (blue) are compared with the continuum model (green). (c)-
(d) Evolution of total cell number, N(t). (e)-(f) Evolution of tissue length, L(t). Red dashed line in (e)-(f)
corresponds to the critical tissue length, ω/β. (e)-(f) Evolution of total cell number, N(t). Mechanical
parameters: k = 1, a = 0.1, η = 1.
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5A.4.4 Differences between the cell-based and continuum models: low N(t)

In the main manuscript, we state that the average of many cell-based realisations does not

agree with the solution of the continuum model when N(t) is low and close to extinction. Here

we provide further explanation.

In Figure 5A.10(a), we extend the results from Figure 5.3 to t = 400. We observe that after

approximately t = 200 there is a difference between the average of many discrete realisations

and the continuum model. Similar behaviour is observed for the evolution of L(t) in Figure

5A.10(b). These differences do not reduce when more simulations are performed. In Figure

5A.10(c) we compare the solution of the continuum model with fifteen realisations of the dis-

crete model and observe that many discrete realisations go extinct before the continuum model

reaches N(t) = 0.

In Figure 5A.10(d) we simulate only the total cell number of the discrete model, which

evolves stochastically according to N(t + dt) = βN(t) − ω, with two methods: i) whenever

N(t) = 0 in an individual realisation it is stopped; ii) allow N(t) < 0. We find that if we allow

N(t) < 0 then the discrete model matches results from the continuum model. However, allow-

ing N(t) < 0 is physically unrealistic. Instead, stopping individual realisations when N(t) = 0

is physically realistic. Therefore, we must accept that the continuum model does not faithfully

replicate the behaviour of the discrete model near extinction. Hence, the discrete model should

be used when considering populations with low N(t).
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Figure 5A.10: Differences near extinction between discrete and continuum results for total cell number
and interface position. The average of 2000 discrete realisations (blue) are compared with the con-
tinuum model (green). (a) Evolution of total cell number, N(t). (b) Evolution of tissue length, L(t). (c)
Evolution of number of cells, N(t), with 15 discrete realisations compared to solution from the continuum
model. Mechanical parameters: k = 10, a = 0.1, η = 1. (d) Difference between discrete realisations
stopped when N(t) = 0 (blue), which is physically realistic, and those where N(t) < 0 was allowed
which is physically unrealistic (red).
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5A.4.5 Chemically-dependent EMT: cell-length-independent proliferation

Small diffusivity, D = 10−5.

In Figure 5.6(d),(g) of the manuscript we observe that there is a difference between the

average of many discrete realisations and the continuum model. We explain that this is due

to the well-mixed assumption for chemical concentration inside cells not being valid for small

diffusivities. We show this in Figure 5A.11. In Figure 5A.11(a) we compare a snapshot of the

chemical concentration from the continuum model and a discrete realisation at very early time,

t = 0.15. In Figure 5A.11(b) we compare the c(L(t), t) from the continuum model with cN (t)

from fifteen realisations of the discrete model, as these are used to calculate the rate of cell

detachment. These results show that the continuum model reaches the concentration thresh-

old much earlier than the discrete model which causes the number of cells in the continuum

model to reduce faster than in the discrete model, hence explaining the difference in Figure

5.6(d),(g).
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Figure 5A.11: Continuum model (green) reaches concentration threshold (red-dashed) faster than
individual realisations of the discrete model (grey). Chemically-dependent EMT with D = 10−5 and with
cell-length-independent proliferation. (a) Concentration snapshot from the continuum model at time t =
0.15, c(x, 0.15) for 0 < x < L(1), compared to one realisation of the discrete model, where the chemical
concentration in cell i is ci(0.15) for i = 1, 2, . . . , N . (b) Chemical concentration at the boundary node of
the continuum model, c(L(t), t), compared to the chemical concentration of the boundary cell, cN (t), for
fifteen realisations of the discrete model. Here N(0) = 20. Mechanical parameters: k = 1, a = 0.1, η = 1
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Starting closer to the chemical threshold with D = 1

In Figure 5.6(f),(i) of the manuscript we observe that there is a difference for D = 1.

Here, we show that this difference is due to stochastic effects in realisations of the discrete

model. Each discrete realisation has a different tissue length, L(t), resulting in the concentra-

tion threshold being reached at different times, which does not occur in the continuum model

(Figure 5A.12(a)).

If instead, we compare results when starting close to the chemical threshold, C, we find an

improved match. Specifically, starting with D = 1 and ci = 490 for i = 1, 2, . . . , 20, and C = 500,

rather than with ci = 0 for i = 1, 2, . . . , 20, we find an improved match (Figure 5A.12(b)-(c)).

We observe that different realisations of the discrete model reach the concentration threshold,

C = 500, at approximately the same time as the continuum model (Figure 5A.12(d)). This is

due to the reduced time for stochastic effects in N(t) and L(t) to play a role.
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Figure 5A.12: Comparison of results from continuum model and the average of many realisations of the
discrete model for chemically-dependent EMT with D = 1 and cell-length-independent proliferation. (a)
Evolution of the chemical concentration in the final cell, cN (t), when ci(0) = 0 for i = 1, 2, . . . , 20. Some
discrete realisations reach the concentration threshold, C = 500 (red-dashed), earlier than the contin-
uum model. (b)-(c) The average of 2000 discrete realisations (blue) are compared with the continuum
model (green). (b) Evolution of total cell number, N(t). (c) Evolution of tissue length, L(t). (d) Evolution
of the chemical concentration in the final cell, cN (t), when ci(0) = 490 for i = 1, 2, . . . , 20. Realisations
of the discrete model reach the concentration threshold, C = 500 (red-dashed), at approximately the
same time as the continuum model. Fifteen individual realisations of the discrete model are shown in
(a) and (d). Mechanical parameters: k = 1, a = 0.1, η = 1.
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5A.4.6 Sensitivity to φ

Chemically-dependent cell detachment is a two-step process: i) the boundary cell gains an

invasive phenotype when the chemical concentration inside the boundary cell is above the

chemical threshold, C; ii) the boundary cell detaches. We introduce a parameter φ ∈ [0, 1]

which defines the ratio of the average time in process i) as φ/ω and the average time in process

ii) as (1−φ)/ω (Figure 5.2). In the manuscript we present results for φ = 0.9 (Figure 5.6). Here,

in Figure 5A.13 we present results for φ = 0.1. As before, we choose parameters so that the

average rate of cell detachment is the same as in previous models. To do this we keep the

chemical threshold, C, fixed and vary the constant number of molecules per unit time supplied

to the boundary cell from the external environment, S. Results for φ = 0.1 show improved

agreement between the continuum model and the average of many discrete realisations in

comparison to φ = 0.9. This is because the time to reach the chemical threshold is quicker

and the time to stochastically detach is longer. Results for D = 10−5 (Figures 5A.13(a),(d),(g))

and D = 10−2 (Figures 5A.13(b),(e),(h)) look similar as they both reach the chemical threshold

after a very short time. Note that when φ = 0 the chemically-dependent model is the same as

the chemically-independent model.

In the above, we keep C fixed and vary S. Alternatively, one could vary C and keep S fixed,

or vary both C and S. Furthermore, one could also keep both C and S fixed, and varying the

rate of cell detachment. However, we do not show this here as then the average time for the

boundary cell to detach is not the same as the average time to detach for previous models,

which would not be a fair comparison.
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Figure 5A.13: Sensitivity to φ. Figure 5.6, exploring diffusion delaying first EMT event, repeated with
φ = 0.1. Cell detachment driven by chemically-dependent EMT with varying diffusivities and cell-length-
independent proliferation mechanism. Cells initially at their resting cell lengths with initial cell popula-
tions N(0) = 20. Kymographs with chemical concentration, c(x, t), colouring shown for (a) D = 10−5,
(b) D = 10−2, (c) D = 1. (d)-(i) The average of 2000 discrete realisations (blue) are compared with the
continuum model (green). (d)-(f) Evolution of total cell number, N(t). (g)-(i) Evolution of tissue length,
L(t). Mechanical parameters: k = 1, a = 0.1, η = 1.
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5A.4.7 Chemically-dependent EMT: linear proliferation

In the manuscript we present results for cell detachment driven by chemically-dependent EMT

and a cell-length-independent proliferation mechanism. Here we present results with a linear

cell-length-dependent proliferation mechanism.

In Figure 5A.14 we observe that when comparing an initially compressed tissue to an ini-

tially stretched tissue, with the same N(0), the time to reach the chemical threshold and the

time for all cells to detach is shorter for the initially compressed tissue. This is due to prolifera-

tion being less likely in the compressed tissue with cell-length-dependent proliferation. This is

also due to the chemical reaching the concentration threshold faster in the compressed tissue

than in the initially stretched tissue, as there is less space for the chemical to diffuse in the

compressed tissue.
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Figure 5A.14: Cell detachment at driven by chemically-dependent EMT with D = 10−2 and with lin-
ear cell-length-dependent proliferation. Two initial cell populations with N(0) = 20, the first uniformly
compressed with L(0) = 1 and the second uniformly stretched with L(0) = 4. (a)-(b) Kymographs with
density, q(x, t), colouring. (c)-(f) The average of 2000 discrete realisations (blue) are compared with the
continuum model (green). (c)-(d) Evolution of total cell number, N(t). (e)-(f) Evolution of tissue length,
L(t). Mechanical parameters: k = 1, a = 0.1, η = 1.
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5A.5 Diffusive equilibrium at all times

If the diffusivity of the EMT-inducing chemical is very high it is reasonable to assume that the

chemical in the tissue is at diffusive equilibrium at all times. This simplifies the analysis as

every cell in the tissue experiences the same concentration at time t, which we denote c(t).

This can be useful to understand possible long-term behaviours.

To proceed, we make a further assumption that cells are always at mechanical equilibrium

and consider the continuum model. As cells are at mechanical equilibrium, the cell-length-

independent and cell-length-dependent proliferation mechanisms are equivalent, so before any

cell detachment events occur N(t) = N(0) exp(βt), L(t) = N(t)a, and c(t) = St/L(t). Then for

cell detachment to occur at least once we require that c(t) > C which is equivalent to requiring

N(0) < S/ (Caβ exp (1)) = NI .

So if N(0) > NI the tissue grows without bound and there is no EMT and no cell detach-

ment, and N(t) evolves according to dN(t)/dt = βN(t). However, if N(0) < NI the time

to reach the concentration threshold, tC , is the solution of tC/ exp(βtC) = CN(0)a/S. While

c(t) > C, N(t) evolves according to dN(t)/dt = βN(t)−φω and if the concentration decreases

below C then N(t) evolves according to dN(t)/dt = βN(t). This results in four possible be-

haviours:

1. unbounded tissue growth without EMT and cell detachment (Figure 5A.15(a),(b));

2. unbounded tissue growth with some EMT (Figure 5A.15(c),(d));

3. eventual tissue homeostasis and constant EMT (Figure 5A.15(e),(f));

4. eventual tissue extinction due to EMT (Figure 5A.15(g),(h)).
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6.0 Preamble

An article under consideration at Nature Communications

Murphy RJ, Browning AP, Gunasingh G, Haass NK, Simpson MJ (2021). Designing and in-

terpreting 4D tumour spheroid experiments. Under consideration at Nature Communications.

bioRxiv preprint.

In this chapter we transition to Part 2 of this thesis exploring how mathematical modelling

can improve experimental designs, in particular for tumour spheroid experiments that are rou-

tinely performed to study cancer progression and treatment. We address objective 5 and

research question 5. We focus on avascular tumour growth and directly quantitatively connect

experimental data, that I collect in the wet laboratory (Figure 6.0), to mathematical modelling

using statistical analysis. Since many mathematical models have already been proposed to

study avascular tumour growth, but few have been experimentally validated, we use the sem-

inal Greenspan mathematical model [79]. Greenspan’s model, due to a spherical symmetry

assumption, describes the growth of the tumour with equations with one spatial dimension,

namely the tumour radius. Note that models in Chapters 2-5 also have one spatial dimension.

Also, similarly to Part 1 of this thesis, Greenspan’s model is a mechanochemical model. How-

ever, in Greenspan’s model mechanical interactions are assumed to maintain the tumour as

a compact solid mass, rather than being explored explicitly as in Chapters 2-5. Furthermore,

chemical diffusion is important in Greenspan’s model to determine the time-evolution of the

tumour internal structure, whereas in Chapter 5 we explore chemical diffusion in relation to

epithelial-mesenchymal transitions.

Key results for this chapter include: performing tumour spheroid experiments with real-time

cell cycle imaging to collect an abundance of experimental data across a range of experi-

mental designs; verification of the Greenspan’s mathematical model to that experimental data;

and development of an objective mathematical modelling framework with statistical identifia-

bility analysis to quantitatively compare experimental designs and identify design choices that

produce reliable biological insight to provide recommendations for future studies.

Due to journal formatting requirements where this article is currently under consideration,

the layout of this chapter is different to previous chapters. This chapter is structured as fol-

lows: Introduction; Results; Discussion; and then Methods. The Supplementary Material for

this Chapter, included in Chapter 6A, is extensive including: further details of mathematical

modelling methods; further details of statistical identifiability analysis methods; experimental

data; additional results for different cell lines; and additional results with synthetic data.

https://doi.org/10.1101/2021.08.18.456910
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Figure 6.0: To perform the tumour spheroid experiments to collect the experimental data for this chap-
ter I was trained, starting from no experience in a laboratory prior to this PhD. I performed tumour
spheroid experiments from start to finish including: cell culturing; spheroid formation; spheroid harvest-
ing; spheroid fixing and mounting in preparation for imaging; confocal microscopy; and, image acquisi-
tion, processing, and analysis. Images show me in the laboratory during the spheroid formation stage of
an experiment (further details are shown in Section 6.5.3 Experimental methods and the experimental
protocol is detailed in [218]).



CHAPTER 6. DESIGNING AND INTERPRETING 4D TUMOUR SPHEROID EXPERIMENTS 220



CHAPTER 6. DESIGNING AND INTERPRETING 4D TUMOUR SPHEROID EXPERIMENTS 221

6.1 Abstract

Tumour spheroid experiments are routinely used to study cancer progression and treatment.

Various and inconsistent experimental designs are used, leading to challenges in interpretation

and reproducibility. Using multiple experimental designs, live-dead cell staining, and real-time

cell cycle imaging, we measure necrotic and proliferation-inhibited regions in over 1000 4D

tumour spheroids (3D space plus cell cycle status). By intentionally varying the initial spheroid

size and temporal sampling frequencies across multiple cell lines, we collect an abundance

of measurements of internal spheroid structure. These data are difficult to compare and in-

terpret. However, using an objective mathematical modelling framework and statistical identi-

fiability analysis we quantitatively compare experimental designs and identify design choices

that produce reliable biological insight. Measurements of internal spheroid structure provide

the most insight, whereas varying initial spheroid size and temporal measurement frequency is

less important. Our general framework applies to spheroids grown in different conditions and

with different cell types.
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6.2 Introduction

Tumour spheroid experiments are an important in vitro tool routinely used since the 1970s

to understand avascular tumour growth, cancer progression, develop cancer treatments, and

reduce animal experimentation [46, 71, 99, 119, 150, 169, 197, 215, 217, 245]. However, a vast

range of experimental designs are employed, leading to inconsistencies in: i) the times when

measurements are taken; ii) experimental durations, ranging from a few days to over a month

[8,18,83, 121,168, 177]; iii) the initial number of cells used to form spheroids [8,18,54, 83,88,

121,168,177], commonly between 300 to 20, 000 cells [54,168]; and, iv) the type of experimental

measurements that are taken [8, 18, 54, 83, 88, 121, 168, 177]. This variability in experimental

protocols makes comparing different studies very difficult, and introduces challenges in both

interpretation and reproducibility of these experiments.

Mathematical modelling provides a powerful tool to provide such intepretation through

model calibration and mechanism deduction. Simple mathematical models calibrated to outer

radius measurements, such as Gompertzian growth models, have been used for decades to

predict the growth of tumours [22, 173]. However, these simple mathematical models do not

provide information about the internal spheroid structure over time. In response, many mathe-

matical models of varying complexity have been developed to explore the internal structure of

spheroids [7,16,17,36,37,40,65,79,85,105,106,108,117,122,135,148,149,152,191,242,243].

Here, we revisit the seminal Greenspan mathematical model for avascular tumour spheroid

growth and quantitatively directly connect it to data for the first time [79]. Greenspan’s mathe-

matical model was the first to describe the three phases of avascular tumour spheroid growth:

in phase (i) cells throughout the spheroid can proliferate; in phase (ii) cells near the periphery

proliferate while a central region of living cells cannot proliferate, referred to as the inhibited

region; and in phase (iii) there is an outer region of proliferative cells, an intermediate region of

living inhibited cells, and a central necrotic region composed of dead cells and cellular material

in various stages of disintegration and dissolution (Figure 6.1a-d, Methods 6.5.1). These vari-

ous regions of cellular behaviour are thought to arise as a result of nutrient availability, such as

oxygen, that is driven by diffusion and uptake.

In this study, we systematically explore a range of experimental designs and measure-

ments. The first and simplest measurements we obtain are of the outer radius of the spheroid.

Next, using live-dead cell staining we obtain measurements of the necrotic region. Measure-

ments of the inhibited region are harder to obtain using traditional techniques. We use fluo-

rescent ubiquitination-based cell cycle indicator (FUCCI) tranduced cell lines [39,87,192,237,

238, 251]. The nuclei of these cells fluoresce red when cells are in the gap 1 (G1) phase of
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the cell cycle and green when cells are in the synthesis (S), gap 2 (G2) and mitotic (M) phases

of the cell cycle (Figure 6.1e). For clarity, we choose to show cells in the gap 1 (G1) phase in

magenta instead of red. These data are collected for human melanoma cell lines established

from primary (WM793b) and metastatic cancer sites (WM983b, WM164) [87, 100, 213, 214],

with endogenously low (WM793b) and high (WM983b, WM164) microphthalmia-associated

transcription factor which is a master regulator of melanocyte biology [219]. Analysing these

data provides real-time visualisation of the cell cycle throughout tumour spheroids and power-

fully reveals the time evolution of the inhibited region (Figure 6.1a-d). This additional dimension

of information that we capture in our experiments, namely the cell cycle status, together with

the three-spatial dimensions of the tumour spheroid give rise to the term 4D tumour spheroid

experiments. Given an abundance of measurements of the outer radius, inhibited radius, and

necrotic radius for tumour spheroids across multiple initial spheroid sizes, time points, and cell

lines, we calculate maximum likelihood estimates (MLE) and form approximate 95% confidence

intervals for the parameters of the Greenspan model. This allows us to quantitatively elucidate

how modifying experimental designs can extract more information from experiments. Further-

more, this approach identifies the experimental design choices that are important and lead to

reliable biological insight.
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Figure 6.1: Tumour spheroid growth and the Greenspan mathematical model. Tumour spheroids expe-
rience three phases of growth. (a)-(d) Confocal microscopy reveals different phases of tumour growth.
Fluorescent ubiquitination-based cell cycle indicator (FUCCI) transduced cells allow visualisation of
each cell’s stage in the cell cycle. (a)-(c) 2D equatorial plane images of WM793b human melanoma
tumour spheroids, formed with 5000 cells per spheroid, on days 3, 8, and 17 after formation. Scale bar
200µm. (d) 3D representation of half of a WM793b human melanoma tumour spheroid on day 17 after
formation, additional 3D representations are shown in supplementary material 6A.3.3. (e) Cell cycle
schematic coloured with respect to FUCCI signal. (f) Schematic for Greenspan mathematical model.
Nutrient diffuses within the tumour spheroid and is consumed by living cells. (g) Snapshot of nutrient
concentration, c(r, t) for 0 < r < Ro(t), for a tumour spheroid in phase (iii) and where Ro(t) is the tu-
mour spheroids outer radius. External nutrient concentration is c∞. Inhibited radius, Ri(t), and necrotic
radius, Rn(t), are defined as the radius where the nutrient concentration first reaches the thresholds ci
and cn, respectively. (h)-(j) Three experimental designs varying by measurement type. Design 1 con-
siders only the outer radius (green). Design 2 considers the outer (green) and necrotic radius (black).
Design 3 considers the outer (green), necrotic (black), and inhibited (magenta) radius. (k) Compari-
son of experimental designs with respect to their value and effort required. (l)-(n) Three experimental
designs that vary due to the time resolution at which measurements are taken. (o) Four experimental
designs that vary the number of cells used to form each spheroid.
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6.3 Results

The results in this main document are for spheroids formed with the WM793b human melanoma

cell line [87, 100, 213, 214]. Additional results in Supplementary Material 6A.6 and 6A.7 show

results for two other cell lines.

6.3.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii

Tumour outer radius measurements are simple to obtain and have been used for decades to

quantify tumour growth [22, 173]. Modern technology enables these measurements to be ob-

tained more frequently, easily, and accurately. For example, the IncuCyte S3 live cell imaging

system (Sartorius, Goettingen, Germany) enables automated image acquisition and process-

ing to measure spheroids every minute throughout an experiment providing a large number of

measurements with ease. However, it is unclear whether these measurements provide suffi-

cient information to understand and probe the internal structure of tumour spheroids and accu-

rately predict tumour growth. Furthermore, it is unclear when measurements should be taken

and the frequency of measurement. Performing experiments with WM793b spheroids formed

with 5000 cells per spheroid, a typical choice in many experiments [83,217–219], 24 spheroids

are imaged every six hours. We monitor the time evolution of the outer radius to determine

when spheroid formation ends and growth begins, which we call day 0 and occurs four days af-

ter seeding (Supplementary Material 6A.3.1), and to decide when to terminate the experiment,

which we choose to be day 20. These measurements, supplemented with additional outer

radius measurements from spheroids harvested for confocal imaging (Supplementary Material

6A.3.2-6A.3.3), provide an abundance of data. We now compare three experimental designs

with increasing temporal resolution: (i) Resolution A, using measurements from days 1, 3, 8,

12, 17 (Figure 6.1l, 6.2a); (ii) Resolution B, using measurements from days 1, 3, 6, 8, 10, 12,

14, 17, 19 (Figure 6.1m, 6.2b); and, (iii) Resolution C, using daily measurements from day 0

to day 19 (Figure 6.1n, 6.2c). Excluding the final day(s) of measurements from these temporal

resolutions allows a predictive check to be performed. Note that all these temporal resolutions

are low relative to the capability of the automated imaging system but are high relative to the

number of measurements typically taken in standard experiments [83,87,121,138,177].

To understand the influence of the choice of temporal resolution we now qualitatively and

quantitatively compare the results. Across the three temporal resolutions in Figures 6.2d-f

we observe excellent agreement between the full set of outer radius measurements, collected



CHAPTER 6. DESIGNING AND INTERPRETING 4D TUMOUR SPHEROID EXPERIMENTS 226

Time [days]

R
ad

iu
s 

[μ
m

]

0 5 10 15 20
0

100

200

300

400

Time [days]
0 5 10 15 20

Time [days]
0 5 10 15 20

(d) (e) (f) Design 1 Resolution CDesign 1 Resolution A
Maximum likelihood estimate

(a) (b) (c) Design 1 Resolution CDesign 1 Resolution BDesign 1 Resolution A

Time [days]

R
ad

iu
s 

[μ
m

]

0 5 10 15 20
0

100

200

300

400

Time [days]
0 5 10 15 20

Time [days]
0 5 10 15 20

Rc [μm]s [day-1]

γ Q

(h)(g)

(i) (j)

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0

100 200 300

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Profile likelihoods

Design 1 Resolution B

Experimental data used

L p 
( R

c ;
 y

⁰ )

L p 
( s

 ; 
y⁰

 )
L p 

( γ
 ; 

y⁰
 )

L p 
( Q

 ; 
y⁰

 )

Resolution A Resolution B Resolution C

Figure 6.2: Increasing the temporal resolution when the outer radius is measured is not sufficient to
predict necrotic and inhibited radii. (a)-(c) Experimental data used in Design 1 with temporal resolutions
A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood estimate com-
pared to full experimental data set, where error bars show standard deviation of the experimental data.
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the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
5000 cells per spheroid.
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every six hours, and the predicted outer radius from the Greenspan model simulated with the

MLE (Methods 6.5.1-6.5.2). However, it is clear that the prediction of the inhibited and necrotic

radius is poor with Resolutions A and B (Figures 6.2d-e). With Resolution C, the prediction of

the inhibited and necrotic radius appears to have improved (Figure 6.2f) but we will show that

it is misleading to suggest that increasing the temporal resolution is always beneficial. While

MLE point estimates are insightful, it is unclear whether a similarly excellent match to the outer

radius measurements could be obtained with different parameter values in the mathematical

model. To answer this question we undertake a profile likelihood analysis of the five parameters

that govern the behaviour of the mathematical model (Methods 6.5.1):

1. s [day−1], the rate at which cell volume is produced by mitosis per unit volume of living

cells (Figure 6.2g),

2. Rc [µm], the outer radius when the necrotic region first forms (Figure 6.2h),

3. γ = λ/s [-], the proportionality constant given by the rate at which cell volume is lost from

the necrotic core, λ, divided by the rate at which cell volume is produced by mitosis per

unit volume of living cells, s, (Figure 6.2i),

4. Q2 = (c∞ − ci) / (c∞ − cn) [-], the ratio of the difference between the inhibited nutrient

concentration threshold, ci, and external nutrient threshold, c∞ to the difference between

the necrotic nutrient concentration threshold, cn, and external nutrient threshold, c∞ (Fig-

ure 6.2j),

5. Ro(0) [µm], the initial outer radius (Supplementary Material 6A.4.3).

Profile likelihoods are a powerful tool to visualise and analyse how many parameter val-

ues give a similar match to the experimental data in comparison to the MLE. Furthermore, we

use profile likelihoods to compute approximate 95% confidence intervals for each parameter

(Supplementary Material 6A.4.1). Narrow approximate 95% confidence intervals indicate pa-

rameters are identifiable and that few parameters give a similar match to the data as the MLE.

In contrast, wide approximate 95% confidence intervals suggest that parameters are not identi-

fiable, that many parameters give a similar match to the experimental data, and that additional

information is required to confidently estimate the parameters.

The profile likelihoods for s across all three temporal resolutions (Figure 6.2g) lead to a peak

that is close to s = 0.14 [day−1]. These peaks correspond to the MLEs. While there is a wide

95% approximate confidence interval for s with Resolution A, there are narrow approximate

95% confidence intervals for s with Resolutions B and C. The profile likelihoods for the other
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parameters, Rc, γ, and Q, are wide and do not change signficantly using different temporal

resolutions (Figures 6.2h-j). For example, the profile likelihoods for γ across all three temporal

resolutions (Figure 6.2i) are approximately flat and equal to one. These profile likelihoods for

Rc, γ, and Q suggest that increasing the temporal resolution does not provide significant ad-

ditional information. These results are consistent with additional results using synthetic data

(Supplementary Material 6A.5). Additional results for different initial spheroid sizes (Supple-

mentary Material 6A.4) and results for the WM983b cell line also clearly show that increasing

the temporal resolution may result in a worse prediction from the MLE for the time evolution

of the internal structure (Supplementary Material 6A.6). Overall, these results suggest that

Design 1 (Figure 6.1h) is not a reliable design to identify the true parameter values and cannot

be used to determine details of the internal structure of tumour spheroids. This is important

because this is the most standard measurement [18,119,138,168,173,177].
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6.3.2 Cell cycle data are informative

Given that measuring the outer radius of tumour spheroids alone (Design 1) is insufficient to

determine details of the internal spheroid structure, we now examine which measurements

are required to provide reliable estimates. The next simplest measurements to obtain are

both the outer radius and necrotic core radius, which we refer to as Design 2 (Figure 6.1i).

However, Design 2 requires far more experimental effort since necrotic core measurements are

more time-consuming involving harvesting, fixing, staining procedures, confocal microscopy or

cryosectioning, and image processing. In addition, necrotic core measurements are end point

measurements only, meaning that many spheroids are required to collect many data points.

While intuitively we may anticipate that more effort leads to more insight, it is impossible to

quantify the value of this additional effort without a mathematical modelling and uncertainty

quantification framework such that we employ here.

Using Design 2, with low temporal resolution, for spheroids formed with 5000 cells per

spheroid, we do not observe a necrotic core until approximately day 8 (Figure 6.3a, Supple-

mentary Material 6A.3.3). The Greenspan model simulated with the MLE excellently matches

the growth of the outer radius, as before, and now captures the formation and growth of the

necrotic core (Figure 6.3c). Interestingly, the MLE suggests that the inhibited region is very

small, so Ri(t) is very close to Rn(t). However, experimental measurements of the inhibited

radius not only suggest that an inhibited region exists, but that it forms prior to the formation of

the necrotic core (Supplementary Material 6A.3.3). Profile likelihoods for each parameter are

relatively narrow, and because the profile for Q is peaked and close to Q = 1, these profiles

are consistent with either the absence of an inhibited region or a very small inhibited region

(Figures 6.3e-h). Therefore, these data do not identify the true parameter values since the

calibrated mathematical model is inconsistent with the experimental observations that clearly

show the formation of an inhibited region. This inconsistency does not mean that the math-

ematical model is incorrect. Our interpretation of this inconsistency is that this experimental

data are insufficient to identify the parameters in the mathematical model.

We now explore Design 3, where we measure the outer, necrotic, and inhibited radius of

multiple tumour spheroids (Figure 6.1j, 6.3b). This design is considered third because mea-

suring the inhibited radius is more difficult and requires substantial additional experimental

effort. Using FUCCI transduced cell lines in combination with optical clearing procedures and

confocal microscopy powerfully reveals intratumoral spatiotemporal differences with respect to

the cycle. This method also requires semi-automated image processing and expert guidance

to minimise subjectivity and accurately identify the inhibited region boundary (Supplementary
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Material 6A.3.2) [218]. Simulating the Greenspan model with the MLE from Design 3 matches

the evolution of the outer radius and captures the evolution of the necrotic and inhibited regions

very accurately (Figure 6.3d). Furthermore, the profile likelihoods for all parameters are well

formed, with a single narrow peak, suggesting that Design 3 identifies the true parameter val-

ues (Figure 6.3e-h). Comparing experimental Designs 1, 2, and 3, we observe that the profile

likelihoods for s are consistent across all designs (Figure 6.3e) and the profile likelihoods for Rc

(Figure 6.3f) are consistent for Designs 2 and 3. However, the profile likelihoods for γ (Figure

6.3g) and Q (Figure 6.3h) emphasise the power of measuring the inhibited radius and using

Design 3 in comparison to Designs 1 and 2. These observations are consistent with addi-

tional results obtained using synthetic data (Supplementary Material 6A.5), different cell lines

(Supplementary Material 6A.6), and initial spheroid sizes (Supplementary Material 6A.4.5). In

Supplementary Material 6A.4.2, we also consider Design 3 with different temporal resolutions

and experimental durations. Experiments performed for 4 or 10 days after spheroids form do

not accurately predict late time behaviour. Designs that use the first days 10 to 20 or days 16

to 19 of measurments do not always accurately predict early time behaviour. Most insight is

gained with Resolutions A, B, and C that cover the full experimental duration.
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6.3.3 Information gained using spheroids of different sizes is consistent

In the literature tumour spheroids are initialised with a wide range of cell numbers, lead-

ing to inconsistent results that are difficult to meaningfully compare across different proto-

cols [8,18,54,83,88,121,168,177]. Furthermore, it is unclear what the impact of this variability

is when tumour spheroids are used to study fine-grained molecular-level interventions or po-

tential drug designs. To quantitatively compare how information gained across experimental

designs differs with respect to the initial number of cells in a spheroid we consider four initial

spheroid sizes: 1250, 2500, 5000, 10000 cells per spheroid (Figure 6.1o). To proceed we use

Design 3, and measure outer, necrotic, and inhibited radius, with time resolution A. Profile like-

lihoods for Ro(0) show four distinct narrow peaks corresponding to each initial spheroid size

as expected (Figure 6.4a). Profile likelihoods for s, Rc, and Q are consistent across the four

initial spheroid sizes, allowing us to compare profile likelihoods on narrower intervals in Figures

6.4b,c,e. The profile likelihoods for γ (Figures 6.4d) are more variable due to the differing num-

ber of measurements collected in phase (iii). These results suggest that the initial spheroid

size does not play a significant role in determining information from experiments, provided suf-

ficient measurements are obtained in phase (iii). To support these results, we show along the

diagonal of Figure 6.4f the solution of the mathematical model evaulated at the MLE associ-

ated with each initial spheroid size compared to the experimental measurements. Next, on the

off-diagonals of Figure 6.4f, we compare how the Greenspan model simulated with the MLE

from one initial spheroid size predicts data from different initial spheroid sizes by only changing

the initial radius. For example, in the top right of Figure 6.4f we show that the Greenspan model

simulated with the MLE obtained formed with 10000 cells per spheroid agrees well with data

from spheroids formed with 1250 cells per spheroid, when the initial radius is set to be the ini-

tial radius of the 1250 MLE. Results in Figure 6.4f also show the inhibited and necrotic regions

form earlier when considering spheroids formed with more cells, and results for spheroids

formed with 10000 cells per spheroid suggest that these spheroids form in phase (ii) rather

than phase (i). These observations are consistent with additional results from synthetic data

(Supplementary Material 6A.5) and the WM983b cell line (Supplementary Material 6A.6).
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6.4 Discussion

In this work we present an objective theoretical framework to quantitatively compare tumour

spheroid experiments across a range of experimental designs using the seminal Greenspan

mathematical model and statistical profile likelihood analysis. By considering different temporal

data resolutions, experiment durations, types of measurements, and initial spheroid sizes we

identify the experimental design choices that lead to reliable biological insight. Namely, Design

3 where we obtain outer, necrotic, and inhibited radius measurements requires most effort but

is essential to determine the dynamics of tumour spheroid structure and growth. Importantly,

we also show that temporal resolution and initial spheroid sizes are less important choices.

Therefore, we recommend that for future studies, where tumour spheroid structure is impor-

tant, that cell cycle data are esssential and that some measurements using Design 3 is more

valuable than many measurements using Designs 1 or 2. Furthermore, as information from

tumour spheroids across varying initial spheroid sizes is relatively consistent, provided suffi-

cient measurements in phase (iii) are obtained, we recommend that performing experiments

with larger tumour spheroids can be beneficial to obtain useful information in a shorter experi-

mental duration (Supplementary Material 6A.5.3). However, we also note that this may lead to

large tumour spheroids that begin growth in phase (ii) rather than phase (i).

To perform this analysis we use Greenspan’s seminal mathematical model, where all pa-

rameters have a relatively straightforward biological interpretation. We find that Greenspan’s

model performs remarkably well across cell lines and initial spheroid sizes, and provides pow-

erful insights into experimental design. Even though Greenspan’s model is relatively simple,

and may not capture all of the biological details of tumour spheroid growth, the fact that results

for experimental data are consistent with those from synthetic data enhances our confidence

that key biological features are captured in Greenspan’s model (Supplementary Material 6A.5).

Future modelling may wish to explore potential model misspecifications, for example WM983b

spheroids appear to reduce in size at very late time suggesting a fourth phase in these in vitro

experiments (Supplementary Material 6A.6); and, WM164 spheroids, possibly due to their lack

of spherical symmetry [219], are more challenging to interpret as information gained using

spheroids of different sizes is not consistent (Supplementary Material 6A.7).

The general framework presented in this work can be applied to other cell types, for exam-

ple FUCCI-transduced lung, stomach and breast cancer cells [223, 250, 251, 255], to extract

more information from existing experimental data across experimental designs, and is suitable

to be extended to consider tumour spheroids grown in different conditions and to more complex

mathematical models. Given that cell cycle data is demonstrated to be informative in this study,
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we suggest that it may be beneficial for FUCCI technology to be further developed and more

widely used, for example in avascular patient-derived organoids [233], and our framework be

extended to these heterogeneous populations accordingly. Furthermore, the insights of this

study provide a platform for future studies that develop, test, and examine cancer treatments

with spheroids. In such future studies cell cycle data will be informative since cytotoxic or cy-

tostatic drugs may result in similar changes in the outer radius but due to different causes, that

can be measured by cell death and cell cycle imaging (Haass laboratory unpublished observa-

tions).
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6.5 Methods

6.5.1 Mathematical model

Greenspan’s mathematical model describes the three phases of avascular tumour spheroid

growth [79]. Spherical symmetry is assumed at all times and maintained by adhesion and

surface tension. Under these minimal assumptions, the only independent variables are time,

t [days], and radial position, r [µm]. Tumour growth is governed by the evolution of the outer

radius, Ro(t) [µm], the inhibited radius, Ri(t) [µm], and the necrotic radius, Rn(t) [µm]. Nutrient

diffuses within the spheroid with diffusivity k [µm2 day−1] and is consumed by living cells at a

constant rate per unit volume α [molµm−3 day−1]. The external nutrient concentration is c∞

[molµm−3]. The nutrient concentration at a distance r from the centre of the spheroid and time

t, denoted c(r, t) [molµm−3], is assumed to be at diffusive equilibrium. Therefore, at any instant

in time we have c(r, t) = c(r) due to fast diffusion of nutrient. However, as Ro(t) is growing,

nutrient diffusion occurs on a growing domain and we write c(r) = c(r(t)). The inhibited and

necrotic regions form when the nutrient concentration at the centre of the spheroid reaches ci

[molµm−3] and cn [molµm−3], respectively. For c(r(t)) > cn the rate at which cell volume is

produced by mitosis per unit volume of living cells is s [day−1]. In the necrotic core cellular

debris disintegrates into simpler chemical compounds that are freely permeable through cell

membranes. The mass lost in the necrotic region is replaced by cells pushed inwards by forces

of adhesion and surface tension. The necrotic core loses cell volume at a rate proportional to

the necrotic core volume with proportionality constant 3λ [day−1], where the three is included

for mathematical convenience.

Conservation of mass is written in words as A = B+C−D−E where A is the total volume

of living cells at any time, t; B is the initial volume of living cells at time t = 0; C is the total

volume of cells produced in t ≥ 0; D is the total volume of necrotic debris at time t; E is the

total volume lost in the necrotic core in t ≥ 0. Writing A,B,C,D,E in their mathematical form

gives the conservation of mass equation and also writing the nutrient diffusion equation gives,

R2
o(t)

dRo(t)

dt
=
s

3

[
R3

o(t)−R3
i (t)
]
− λR3

n(t), (6.5.1.1)

1

r2

∂

∂r

(
r2 ∂

∂r
c(r(t))

)
=
α

k
H (r −Rn(t)) H (Ro(t)− r) , 0 ≤ r ≤ Ro(t) (6.5.1.2)

where Ri(t), Rn(t) are the radii implicitly defined by c(Ri(t), t) = ci, and c(Rn(t), t) = cn,

respectively, if the nutrient concentration inside the spheroid is sufficiently small otherwise

Ri(t) = 0 or Rn(t) = 0, and H(·) is the Heaviside step function. There are eight unknowns:
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Θ = (s, λ, α, k, c∞, ci, cn, Ro(0)). Note this includes Ro(0) which we treat as a parameter since

we also need to estimate this quantity. Rescaling reduces the number of parameters to five:

θ = (Ro(0), Rc, s, γ,Q). The new dimensionless parameters are: the outer radius when the

necrotic region first forms defined as R2
c = (6k/α)(c∞ − cn); Q2 = (c∞ − ci)/(c∞ − cn); and

γ = s/λ. Further details, and a formal demonstration that this model is equivalent to a model

where nutrient determines the necrotic region and waste produced from live cells determines

the inhibited region, are provided in Supplementary Material 6A.1.
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6.5.2 Practical parameter identifiability analysis

To determine the maximum likelihood estimate (MLE) and approximate 95% confidence inter-

vals for the parameters θ = (Ro(0), Rc, s, γ,Q) we use profile likelihood identifiability analy-

sis [180, 188, 204, 205, 246]. We first choose simple parameter bounds and then compare the

width of these simple parameter bounds to realised interval estimates for the parameters. Ini-

tial parameter bounds are chosen to be the same across all experimental designs analysed in

this study. Outer radius data suggests we choose 0 < Ro(0) < 350 [µm] and 0 < Rc < 250 [µm].

Assuming a cell doubling time of at least 12 hours and performing preliminary data exploration,

we set 0 < s < 1 [day−1] (Supplementary Material 6A.2.1). Limited information exists for the

parameter γ so bounds are determined by preliminary data exploration to be 0 < γ < 6. By

definition of Q and experimental results that show the inhibited region forms before the necrotic

core, we set 0 < Q ≤ 1. Note that the time-evolution of Ro(t) and Rn(t) are the same for Q = 1

and Q > 1. The difference arises for Ri(t), where it is equal to Rn(t) for Q = 1 and equal to

zero for Q > 1.

To determine the interval estimates for the parameters we treat the mathematical model as

having two components. The first is the deterministic mathematical model governing the evo-

lution of Ro(t), Rn(t), and Ri(t) and the second is a probabilistic observation model accounting

for experimental variability and measurement error. Specifically, we assume that experimental

measurements are noisy observations of the deterministic mathematical model [97, 188]. For

each of the three measurement types Ro(t), Rn(t), and Ri(t) we assume that the observa-

tion error is independent and identically distributed and that the noise is additive and normally

distributed with zero mean and variance σ2
o, σ

2
n, and σ2

i , respectively [97,244] (Supplementary

Material 6A.2.3). We approximate σ2
o ≈ s2

o, σ
2
n ≈ s2

n, and σ2
i ≈ s2

i where s2
o, s

2
n, and s2

i are pooled

sample variances of the outer, necrotic, and inhibited radius measurements, respectively [31].

The likelihood function p(yo|θ) is the likelihood of the observations yo given the parameter

θ. This corresponds to the probabilistic observation model evaluated at the observed data.

The maximum likelihood estimate is θ̂ = argmax
θ

p(yo|θ). We present results in terms of the

normalised likelihood function L(θ; yo) = p(yo|θ)/max
θ
p(yo|θ) which we consider a function of θ

for fixed yo. Profile likelihoods for each parameter are obtained by assuming the full parameter

θ can be partitioned into a scalar interest parameter, ψ, and vector nuisance parameter, φ, so

that θ = (ψ, φ). The profile likelihood for ψ is then Lp(ψ; yo) = max
φ

L(ψ, φ; yo). Approximate

95% confidence intervals are then calculated using a profile likelihood threshold value of 0.15

(Supplementary Material 6A.4.1) [180]. Prediction intervals are not shown since confidence

intervals are narrow in many cases. Further details, including exact forms of the likelihood
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function and the use of log-likelihoods for calculations, and numerical methods are provided in

Supplementary Material 6A.2.
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6.5.3 Experimental methods

Cell culture. The human melanoma cell lines WM793b, WM983b, and WM164 were genotypi-

cally characterised [87,100,213,214], grown as described in [217], and authenticated by short

tandem repeat fingerprinting (QIMR Berghofer Medical Research Institute, Herston, Australia).

All cell lines were transduced with fluorescent ubiquitination-based cell cycle indicator (FUCCI)

constructs as described in [87,217].

Spheroid generation, culture, and experiments. Spheroids were generated in 96-well cell

culture flat-bottomed plates (3599, Corning), with four different seeding densities (1250, 2500,

5000, 10000 total cells/well), using 50µl total/well non-adherent 1.5% agarose to promote for-

mation of a single spheroid per well [218]. For all spheroid experiments, after a formation phase

of 4, 3 and 2 days for WM793b, WM164 and WM983b, respectively (Supplementary Material

6A.3.1), and then every 3-4 days for the duration of the experiment, 50% of the medium in each

well was replaced with fresh medium (200 µl total/well). Incubation and culture conditions were

as described in Cell culture.

To estimate the outer radius, one plate for each cell line, containing 24 spheroids for each

initial spheroid size, was placed inside the IncuCyte S3 live cell imaging system (Sartorius,

Goettingen, Germany) incubator (37 ◦C, 5% CO2) immediately after seeding the plates. In-

cuCyte S3 settings were chosen to image every 6 hours for the duration of the experiment with

the 4× objective. To estimate the radius of the inhibited and necrotic region and additional

outer radius measurements, spheroids maintained in the incubator were harvested, fixed with

4% paraformaldehyde (PFA), and stored in phosphate buffered saline solution, sodium azide

(0.02%), Tween-20 (0.1%), and DAPI (1:2500) at 4 ◦C, on days 3, 4, 5, 7, 10, 12, 14, 16, 18,

21 and 24 after seeding. For necrotic core measurements, 12 hours prior to harvesting 1µmol

total/well DRAQ7TM dye (Abcam, Cambridge, United Kingdom. ab109202) was added to each

well [114, 218]. Fixed spheroids were set in place using low melting 2% agarose and optically

cleared in 500µl total/well high refractive index mounting solution (Quadrol 9 % wt/wt, Urea

22 % wt/wt, Sucrose 44 % wt/wt, Triton X-100 0.1 % wt/wt, water) for 2 days in a 24-well glass

bottom plate (Cellvis, P24-1.5H-N) before imaging to ensure accurate measurements [47,222].

Images were then captured using an Olympus FV3000 confocal microscope with the 10× ob-

jective focused on the equatorial plane of each spheroid.

Image processing. Images captured with the IncuCyte S3 were processed using the ac-

companying IncuCyte 2020C Rev1 software (spheroid analysis type, red image channel, largest

red object area per well). Area masks were visually compared with IncuCyte brightfield images

to confirm accuracy. Area was converted to an equivalent radius (r2 = A/π). Confocal mi-
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croscopy images were converted to TIFF files in ImageJ and then processed with custom

MATLAB scripts that use standard MATLAB image processing toolbox functions. These scripts

are freely available on Zenodo with DOI:10.5281/zenodo.5121093 [33].

https://doi.org/10.5281/zenodo.5121093
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6A.1 Mathematical model

6A.1.1 Nutrient only

Here we recall Greenspan’s mathematical model governing the evolution of Ro(t), Ri(t), and

Rn(t) (Figure 6.1f-g). We consider conservation of mass to govern the evolution of Ro(t).

Assuming: i) all living cells are identical and an incompressible mass of constant volume; ii)

cell division occurs instantaneously relative to the growth time of the tumour, and each daughter

cell occupies the same volume as any other cell; iii) the proliferation rate is a constant, s, for

cells which have sufficient nutrient; and, iv) the mass density of living cells is constant and

equal to density of necrotic debris; then conservation of mass is equivalent to conservation of

volume, giving,

A = B + C −D − E, (6A.1.1)

where A is the total volume of living cells at any time, t; B is the initial volume of living cells at

time t = 0; C is the total volume of cells produced in t ≥ 0; D is the total volume of necrotic

debris at time t; and, E is the total volume lost in the necrotic core in t ≥ 0.

Writing A,B,C,D,E in their mathematical forms and recalling that the volume and surface

area of a sphere with radius r is 4πr3/3 and 4πr2, respectively, gives

A =
4π

3

(
R3

o(t)−R3
n(t)

)
, (6A.1.2.1)

B =
4π

3
R3

o(0), (6A.1.2.2)

C = 4π

∫ t

0

∫ Ro(t)

Ri(t)
sr2 dr dt, (6A.1.2.3)

D =
4π

3
R3

n(t), (6A.1.2.4)

E =
4π

3

∫ t

0
3λR3

n(t) dt, (6A.1.2.5)

where the three inside the integral of equation (6A.1.2.5) is included for mathematical con-

venience. Substituting equations (6A.1.2.1)-(6A.1.2.5) into equation (6A.1.1) and simplifying

gives,

R3
o(t) = R3

o(0) + 3

∫ t

0

∫ Ro(t)

Ri(t)
sr2 dr dt−

∫ t

0
3λR3

n(t) dt. (6A.1.3)

Differentiating equation (6A.1.3) with respect to time and simplifying gives the more useful
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form,

R2
o(t)

dRo(t)

dt
=

s

3

(
R3

o(t)−R3
i (t)
)

︸ ︷︷ ︸
proliferation of living cells

− λR3
n(t).︸ ︷︷ ︸

mass lost in necrotic core
(6A.1.4)

The other important equation concerns the evolution of nutrient within the spheroid. Rewriting

equation (6.5.1.2) gives

1

r2

∂

∂r

(
r2 ∂

∂r
c(r(t))

)
=
α

k
H (r −Rn(t)) H (Ro(t)− r) , 0 ≤ r ≤ Ro(t). (6A.1.5)

where H(·) is the Heaviside step function.

To determine the full evolution of the system we solve equations (6A.1.4) and (6A.1.5) to-

gether with the nutrient thresholds ci and cn which implicitly defineRi(t) andRn(t), respectively,

through

c(Ri(t), t) = ci, (6A.1.6.1)

c(Rn(t), t) = cn, (6A.1.6.2)

if the nutrient concentration inside the spheroid is sufficiently small otherwise Ri(t) = 0 or

Rn(t) = 0. Note that the equation (6A.1.4) for nutrient does not involve any temporal derivative

so the only initial condition required to solve the full system of equations (6A.1.4) and (6A.1.5)

is the initial outer radius, Ro(0).

The solution of equation (6A.1.5) is,

c(r(t)) =


c∞ −

α

6k

(
R2

o(t)− r2
)

+
AR3

n(t)

3k

(
1

r
− 1

Ro(t)

)
, Rn(t) ≤ r ≤ Ro(t),

cn, 0 ≤ r ≤ Rn(t),

(6A.1.7)

where

c∞ − cn =
α

3k

[
1

2

(
R2

o(t)−R2
n(t)

)
− R2

n(t)

Ro(t)
(Ro(t)−Rn(t))

]
. (6A.1.8)

The necrotic region first forms when the nutrient concentration reaches cn at the centre,

which occurs when Rn(t) = 0 and r = 0 in equation (6A.1.8), which gives a critical outer

radius,

R2
c =

6k

α
(c∞ − cn) . (6A.1.9)
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Also recall that Ri(t) corresponds to c(Ri(t), t) = ci which we can substitute into equation

(6A.1.7) to give,

c∞ − ci =
α

3k

[
1

2

(
R2

o(t)−R2
i (t)
)
−R3

n(t)

(
1

Ri(t)
− 1

Ro(t)

)]
. (6A.1.10)

Since the inhibited region first forms when the nutrient concentration reaches ci at the centre

of the spheroid and the necrotic region forms after the inhibited region, setting Rn(t) = 0 and

r = 0 on right-hand-side of equation (6A.1.10) gives the outer radius when the inhibited region

first forms

R2
d =

6k

α
(c∞ − ci) . (6A.1.11)

We can then define a useful dimensionless quantity, Q2 = R2
d/R

2
c = (c∞ − ci) / (c∞ − cn),

which is related to the time when phase (ii) begins.

Equations (6A.1.4), (6A.1.5), and (6A.1.6) can now be solved in each of phase (i), (ii), and

(iii). To provide valuable insights into the structure of the solutions to the Greenspan model

it helps to consider the non-dimensional form of the equations and their solutions. To non-

dimensionalise we rescale time with s to give τ = st and rescale lengths with Rc via ξo(t) =

Ro(t)/Rc, ξi(t) = Ri(t)/Rc, and ξn(t) = Rn(t)/Rc. Then phase (ii) starts when ξo(t) = Q and

phase (iii) starts when ξo(t) = 1. We now consider each phase in turn.

Phase (i)

In phase (i), all cells are free to proliferate and the nutrient concentration is sufficiently high,

i.e. c(r, t) > ci for 0 ≤ r ≤ Ro(t), such that there is no inhibited or necrotic region (Figure

6.1(a)). Phase (i) ends when the nutrient concentration at the centre of the spheroid equals

the inhibited threshold, when c(0, t) = ci and Ro(t) = Rd.

Since Ri(t) = 0 and Rn(t) = 0, equation (6A.1.4) becomes

R2
o(t)

dRo(t)

dt
=
s

3
R3

o(t), (6A.1.12)

giving,

Ro(t) = Ro(0) exp

(
st

3

)
. (6A.1.13)
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Non-dimensionalising gives,

ξo(τ) = ξo(0) exp
(τ

3

)
, for 0 ≤ τ ≤ 3 log

(
Q

ξo(0)

)
= τ1. (6A.1.14)

Given the solution in equation (6A.1.14) we determine Ro(t) by reintroducing s and Rc,

Ro(t) = ξo(st)Rc, for 0 ≤ t ≤ τ1

s
. (6A.1.15)

Note thatRi(t) = 0 andRn(t) = 0 throughout phase (i). Hence, we have obtainedRo(t), Ri(t), Rn(t)

throughout this phase.

Phase (ii)

In phase (ii) the spheroid experiences inhibited growth due to a core of inhibited cells and outer

region of freely proliferating cells (Figure 6.1(b)). Phase (ii) ends when the necrotic core forms.

Since Ri(t) > 0 and Rn(t) = 0, equation (6A.1.4) becomes

R2
o(t)

dRo(t)

dt
=
s

3

(
R3

o(t)−R3
i (t)
)
. (6A.1.16)

Non-dimensionalising equation (6A.1.16) gives,

ξ2
o(τ)

dξo(τ)

dτ
=

1

3

[
ξ3

o(τ)− ξ3
i (τ)

]
. (6A.1.17)

Equation (6A.1.17) is a function of two variables, ξo(τ) and ξi(τ), which we can simplify to a

function of one variable by introducing a change of variables yi(τ) = ξi(τ)/ξo(τ), and by using

the constraint Q2/ξ2
o(τ) = 1− y2

i (τ), to give

3yi(τ)

(1− yi(τ)2) (1− yi(τ)3)

dyi(τ)

dτ
= 1, (6A.1.18)

with initial condition yi(τ) = 0 at τ = τ1 and terminating condition yi(τ)2 = 1 − Q2. The

constraint used to derive equation (6A.1.18) and the termination condition for phase (ii) are

obtained with the following argument. In phase (ii) equation (6A.1.10) is

R2
o(t)−R2

i (t) = R2
d. (6A.1.19)

Non-dimensionalising equations (6A.1.8) and (6A.1.19), using definitions of ξo(τ), ξi(τ), Q, and

combining the resulting expressions gives Q2 = ξ2
o(τ)− ξ2

i (τ). Rewriting in terms of yi(τ) gives
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Q2/ξ2
o(τ) = 1− y2

i (τ), which gives the constraint used to derive equation (6A.1.18). Using the

fact that phase (ii) ends when ξo(τ) = 1 and rearranging gives the termination condition for

yi(τ).

Numerically solving equation (6A.1.18), using MATLAB’s in-built ode15s differential equa-

tion solver [145] with absolute and relative tolerances set to 1× 10−8, we obtain yi(τ) for phase

(ii). To obtain Ro(t) we use the constraint Q2/ξ2
o(τ) = 1 − yi(τ)2, and definitions of ξo(τ)

and ξi(τ) to obtain Ro(t) = RcQ
[
1− y2

i (st)
]−1/2. Similarly using the constraints we obtain

Ri(t) = RcQ
[
1/
(
1− y2

i (st)
)
− 1
]1/2. Recall Rn(t) = 0 throughout phase (ii). Hence, we have

obtained Ro(t), Ri(t), Rn(t) throughout this phase.

Phase (iii)

In phase (iii) the spheroid experiences inhibited growth due to an outer proliferating region, an

intermediate region of inhibited cells, and a necrotic core (Figure 6.1(a)). At steady state there

is a balance between the number of cells that are proliferating in the outer region and mass

lost from the necrotic core.

SinceRi(t) > 0 andRn(t) > 0, all terms in equation (6A.1.4) are non-zero. Non-dimensionalising

equation (6A.1.4) gives

ξ2
o(τ)

dξo(τ)

dτ
=

1

3

[
ξ3

o(τ)− ξ3
i (τ)

]
− γξ3

n(τ), (6A.1.20)

where γ = λ/s. Equation (6A.1.20) is a function of three variables ξo(τ), ξi(τ), ξn(τ). Intro-

ducing yi(τ) = ξi(τ)/ξo(τ) and yn(τ) = ξn(τ)/ξo(τ) we rewrite equation (6A.1.20) and the

non-dimensionalised forms of equations (6A.1.8) and (6A.1.10) as

9yn(τ)

(1 + 2yn(τ)) (1− yn(τ))

dyn(τ)

dτ
= 1− y3

i (τ)− 3γy3
n(τ), (6A.1.21.1)

ξ−2
o (τ) = (1− yn(τ))2 (1 + 2yn(τ)) , (6A.1.21.2)

Q2

ξ2
o(τ)

= 1− y2
i (τ)− 2y3

n(τ)

(
1− yi(τ)

yi(τ)

)
, (6A.1.21.3)

noting that equation (6A.1.21.1) is obtained using equation (6A.1.21.2). Then we numerically

solve equations (6A.1.21.1)-(6A.1.21.3) to obtain yi(τ) and yn(τ) using the the following ap-

proach. First, we substitute equation (6A.1.21.2) into equation (6A.1.21.3) to eliminate ξo(τ)

and rearrange which gives

0 = −Q2
[
(1− yn(τ))2 (1 + 2yn(τ))

]
+ 1− y2

i (τ)− 2y3
n(τ)

(
1− yi(τ)

yi(τ)

)
. (6A.1.22)
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Equations (6A.1.21.1) and (6A.1.22) form a system of differential-algebraic equations which we

numerically solve using MATLAB’s in-built ode15s solver with relative and absolute tolerances

set to 1 × 10−8. Given the solution for yn(τ) and yi(τ) we obtain Ro(t), Ri(t) and Rn(t) using

the following approach. Given yn(τ) we obtain ξo(τ) using equation (6A.1.21.2). Then Ro(t) =

Rcξo(st). Using the definition of yi(τ), yn(τ) and ξo(τ) we obtain Ri(t) = Rcyi(st)ξo(st) and

Rn(t) = Rcyn(st)ξo(st). Hence, we have obtained Ro(t), Ri(t), Rn(t) throughout this phase.

Key software for this section is freely available on a GitHub repository.

Greenspan’s mathematical model assumes that tumour spheroids experience three phases

of growth [79]. While we find experimental evidence confirming that many tumour spheroids

experience three phases of growth (Figures 6.1, 6A.9, 6A.10, 6A.11, 6A.13, and 6A.14), we

also find experimental evidence suggesting tumour spheroids seeded with a higher number of

cells may form in phase (ii) (Figures 6A.12 and 6A.15). Here, we now describe how to initialise

Greenspan’s mathematical model in phase (ii) and in phase (iii). We consider phase (iii) since

calculations used for statistical identifiability analysis may choose parameters such that the

likelihood of starting in phase (iii) is evaluated.

To initialise Greenspan’s model with a spheroid in phase (ii) we first prescribe Ro(0) and

recall that in phase (ii) there is no necrotic core, so Rn(0) = 0. Then from equation (6A.1.10)

with Rn(0) = 0, the corresponding inhibited radius is Ri(0) =
(
Ro(0)2 −Q2R2

c

)1/2. To ini-

tialise Greenspan’s model with a spheroid in phase (iii) we first prescribe Ro(0). Given Ro(0)

we rewrite equation (6A.1.8) as the following cubic polynomial (2/Ro(0))Rn(0)3 − 3Rn(0)2 +

Ro(0)2 − R2
c = 0, where Rn(0) is the unknown variable. We determine the three solutions of

this polynomial using the MATLAB function roots [4] and define Rn(0) as the only physically

realistic real-valued solution which satisfies 0 < Rn(0) < Ro(0). Similarly, to obtain Ri(0),

we rewrite equation (6A.1.10) as the following cubic polynomial Ri(0)3 + (Q2R2
c − Ro(0)2 −

2Rn(0)3/Ro(0))Ri(0) + 2Rn(0)3 = 0, where Ri(0) is the unknown variable and Ro(0) and Rn(0)

are known. We then define Ri(0) as the only physically realistic real-valued solution which

satisfies Rn(0) < Ri(0) < Ro(0). For statistical identifiability analysis we assume spheroids

may form in phase (i), phase (ii), or phase (iii).

The approach taken in phases (i), (ii), and (iii) means that we do not require knowledge of

the values of the parameters c∞, cn, ci, k and α but instead only the value of Q = [(c∞ −
ci)/(c∞ − cn)]1/2. This reduces the number of parameters describing the evolution of the

spheroid from eight to five. The three pieces of information no longer consider regard the

nutrient concentration which we do not directly measure in this study and has been explored

in other studies [80,155]. Furthermore, equations (6A.1.8)-(6A.1.10) show that there are con-

https://github.com/ryanmurphy42/4DSpheroids_Murphy2021
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straints on the relationships between Ro(t), Ri(t), Rn(t) which can be explored further.
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6A.1.2 Nutrient and waste

The model presented in methods section 6.5.1 and supplementary material 6A.1.1 is a special

case of Greenspan’s model [79]. The general Greenspan model proposes the inhibited region

is a result of a build up of waste produced from live or dead cells and the necrotic region forms

due to a lack of nutrient. Here, we consider the alternative case where waste is produced

from live cells only and show that, for the measurements we obtain, it is equivalent to the

nutrient only case we consider in the main manuscript (Figure 6A.1). We do not consider

waste produced only from dead cells in this study since with that model the necrotic core must

form before the inhibited region which is not what we observe in these experiments (Figure

6.1(b)).

In comparison to the nutrient only model in supplementary material 6A.1.1, the model with

nutrient and waste requires an additional equation for the evolution of waste concentration,

β(r, t). The full system of governing equations are,

R2
o(t)

dRo(t)

dt
=
s

3

[
R3

o(t)−max(R3
n(t), R3

i (t))
]
− λR3

n(t), (6A.1.23.1)

1

r2

∂

∂r

(
r2 ∂

∂r
c(r(t))

)
=
α

k
H (r −Rn(t))H (Ro(t)− r) , 0 ≤ r ≤ Ro(t), (6A.1.23.2)

1

r2

∂

∂r

(
r2 ∂

∂r
β(r(t))

)
=
P

κ
H (Rn(t)− r) , 0 ≤ r ≤ Ro(t), (6A.1.23.3)

where equations (6A.1.23.1) and (6A.1.23.2) are unchanged, by restricting our attention to the

case when the inhibited region forms before the necrotic region, and equation (6A.1.23.3) is

new. In equation (6A.1.23.3), the term on the right-hand-side corresponds to production of

waste by live cells at a constant rate per unit volume P that diffuses with diffusivity κ. Fur-

thermore, Ri(t) is defined as the solution of β(Ri(t), t) = βi if a solution exists and Ri(t) = 0

otherwise.

This model, with nutrient and waste, is equivalent to the nutrient only model when we focus

on the five key parameters Ro(0), Rc, s, γ,Q governing the dynamics. The only difference is a

new definition of Q,

Q2 =
βiκ

P︸︷︷︸
waste parameters

α

k(c∞ − cn)
.︸ ︷︷ ︸

oxygen parameters

(6A.1.24)

This new definition of Q provides a different interpretation of the data since Q now represents a

combination of waste and nutrient parameters. Importantly, with this new definition of Q there

are two cases to consider: i) Q ≤ 1, and ii) Q > 1. Previously, we only considered case (i). In
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Figure 6A.1: Greenspan’s model with waste and nutrient. (a),(c) Build up of waste from live cells results
in the formation of an inhibited region. (a) Schematic of waste produced from live cells and diffusing to
the external environment. (c) Snapshot of waste concentration against spheroid radius for a spheroid
in phase (iii). Ri(t) is determined by the inhibited waste threshold βi. (b),(d) Lack of nutrient forms
the necrotic region. (b) Nutrient, shown in orange, diffusing into the spheroid. (d) Snapshot of nutrient
concentration against spheroid radius for a spheroid in phase (iii). Rn(t) is determined by the necrotic
nutrient threshold cn. External nutrient concentration is c∞.
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case (ii) where Q > 1 the necrotic core forms before the inhibited region. We do not observe

this scenario in the experiments that we perform and therefore we restrict the attention of this

study to case (i) with Q ≤ 1.
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6A.2 Profile likelihood further details

6A.2.1 Numerical method

Parameter identifiability using statistical profile likelihood analysis is outlined in the methods

section 6.5.2. We now provide further details.

We partition the full set of observations yo into sets of observations yo
o, y

o
n, and yo

i corre-

sponding to experimental measurements of Ro(t), Rn(t), and Ri(t). For computational accu-

racy, we perform calculations using the log-likelihood which is, assuming data independence,

l (θ; yo) =

No∑
j=1

log
[
f(yo

o,j ; yo,j(θ), σ
2
o)
]

+

Nn∑
j=1

log
[
f(yo

n,j ; yn,j(θ), σ
2
n)
]

+

Ni∑
j=1

log
[
f(yo

i,j ; yi,j(θ), σ
2
i )
]
,

(6A.2.1)

where yo,j(θ), yn,j(θ), and yi,j(θ) are values ofRo(t), Rn(t), andRi(t) generated from Greenspan’s

deterministic mathematical model and evaluated at time points corresponding to the experi-

mental observations yo
o,j , y

o
n,j , and yo

i,j , respectively; f(x;µ, σ2) denotes a Gaussian probability

density function with mean µ and variance σ2, calculated using MATLAB’s normpdf function [3];

No, Nn, and Ni denote the total number of experimental observations of Ro(t), Rn(t), and Ri(t),

respectively; and, σ2
o, σ

2
n, and σ2

i correspond to pooled variances of the three measurement

types Ro(t), Rn(t), and Ri(t), respectively [97, 244]. We approximate σ2
o ≈ s2

o, σ
2
n ≈ s2

n, and

σ2
i ≈ s2

i , where s2
o, s

2
n, s

2
i are pooled sample variances of the outer, necrotic, and inhibited

radius measurements, respectively [31]. The pooled sample variance for the outer radius is

defined as

s2
o =

1

No − 1

No∑
j=1

(
yo

o,j − yo
o,j

)2
, (6A.2.2)

where yo
o,j is the jth observation in yo

o and yo
o,j is the sample mean of yo

o corresponding to the

time at which the jth measurement was observed. We define s2
n and s2

i similarly.

The maximum likelihood esimate (MLE), θ̂, is defined as,

θ̂ = argmax
θ

[ (
θ; y0

)]
, (6A.2.3)
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which we determine by numerically solving the equivalent minimisation problem,

θ̂ = argmin
θ

[
−
(
θ; y0

)]
. (6A.2.4)

By assuming the full parameter θ can be partitioned into an interest scalar parameter, ψ, and

a nuisance vector parameter, φ, the profile log-likeilihood is

lp
(
ψ; y0

)
= max

φ

[ No∑
j=1

log
[
f(yo

o,j ; yo,j(ψ, φ), σ2
o)
]

+

Nn∑
j=1

log
[
f(yo

n,j ; yn,j(ψ, φ), σ2
n)
]

+

Ni∑
j=1

log
[
f(yo

i,j ; yi,j(ψ, φ), σ2
i )
] ]
.

(6A.2.5)

Given the five-dimensional parameter space that we are searching to find the maximum

likelihood estimate and the four-dimensional parameter space we search to find profile like-

lihoods, we sequentially determine the maximum likelihood estimate (MLE) and profile likeli-

hoods. All subsequent minimisation optimisations are performed using functions in MATLABs

global optimisation toolbox. Specifically, we use the GlobalSearch function [146] where we

create the following optimisation problem structure. We set the local solver to be the fmincon

function using the sequential quadratic programming (sqp) algorithm, MaxIterations = 2500

and MaxFunctionEvaluations = 5000. The objective function is defined as the argument of

the minimisation of the right hand side of equation (6A.2.4). Other non-default settings that

we vary, include NumTrialPoints, MaxTime, FirstGuess, lowerbounds, upperbounds, along

with the method we use to find the MLE and approximate 95% confidence intervals are now

discussed.

1. Firstly, we search for MLE. We set the lowerbounds and upperbounds in agreement

with the simple parameter bounds defined in the methods section 6.5.2. By setting

NumTrialPoints = 5000 and MaxTime = 7200 [seconds], we search for the maximum likeli-

hood estimate for 2 hours with the FirstGuess as (Q, γ, s,Rc, Ro(0)) = (0.9, 3, 0.5, 175, 125).

This gives the first estimate for the maximum likelihood estimate θ̂1. However, numerical

experimentation indicates this first estimate is not always an accurate estimate of the true

MLE.

2. Secondly, we partition the simple parameter bounds into two sets: [lowerbounds, θ̂1]

which we refer to as the lower set, and [θ̂1, upperbounds] which we refer to as the up-

per set. We then discretise each lower and upper set uniformly using 20 grid points,

including the end points. Starting at the grid point associated with θ̂1 we set FirstGuess
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= θ̂1, NumTrialPoints = 2000 and MaxTime = 900 [seconds] in the GlobalSearch function.

We then move to the next closest grid point and adjust FirstGuess. If we are at the

closest grid point to θ̂1 we set FirstGuess to be the solution at the previous gridpoint.

If we are at any other grid point we make a first order approximation of the first guess

by linear extrapolation of the values obtained from the two previous grid points. Before

using the first order approximation as a first guess we also check that the value remains

within the parameter bounds and if it does not we set FirstGuess to be the solution at the

previous gridpoint. After calculating the likelihood at each point in the lower and upper

set we combine these together to form the first approximation for the profile likelihood.

3. Thirdly, we calculate an estimate of the confidence intervals using a profile likelihood

threshold value of 0.15, which can be approximately calibrated via simulation or the χ2−
distribution [180]. Specifically, we start at either end of the simple parameter bounds until

we determine the first grid point where the normalised profile likelihood, Lp
(
ψ; y0

)
=

exp

(
lp
(
ψ; y0

)
−max

θ

[ (
θ; y0

)])
, is greater than 0.15. We then set new lower and upper

bounds as being two grid points to the left or right of that location, respectively. Note that

a more sophisticated approach to determine the approximate 95% confidence intervals is

applied in step seven to compute the results shown in Table 6A.3, which is not required

here.

4. Fourth, we repeat the search for the maximum likelihood estimate using the new lower

and upper bounds with the same settings as we first used.

5. Fifth, we repeat the calculations for the profile likelihoods using the new lower and upper

bounds.

6. Sixth, we determine the maximum likelihood estimate to be the value across all calcu-

lations which maximises the likelihood. We form the final profile likelihood from steps

two and four and present in figures the normalised likelihood function, Lp
(
ψ; y0

)
=

exp

(
lp
(
ψ; y0

)
−max

θ

[ (
θ; y0

)])
.

7. To compute approximate 95% confidence intervals for each parameter, as shown in Table

6A.3, we form the profile likelihood from steps two and four. Next, we start at either end of

the simple parmater bounds until we determine the first grid point where the normalised

profile likelihood, Lp
(
ψ; y0

)
= exp

(
lp
(
ψ; y0

)
−max

θ

[ (
θ; y0

)])
, is greater than profile

likelihood threshold value of 0.15 [180]. These two grid points are a first approximation

of the lower and upper 95% confidence interval boundaries. Finally, to obtain a more
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accurate estimate of the approximate 95% confidence interval boundaries, we consider

each of these two grid points in turn as the FirstGuess for the MATLAB function fsolve [1],

and use linear interpolation, with the MATLAB function interp1 [2].
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6A.2.2 Parameter bounds

To interpret s we consider the evolution of the tumour spheroid in phase (i). Equation (6A.1.13)

can be written in terms of volume V (t), recalling that the volume of a sphere is 4πR3
o(t)/3, as

V (t) = V (0) exp(st), (6A.2.6)

where V (0) = 4πR3
o(0)/3. Then by letting T define the time when V (T ) = 2V (0), we relate s

to the doubling time of the cells through

s =
1

T
loge(2). (6A.2.7)

Then assuming that the doubling time is greater than 12 hours (= 1/2 day) we obtain an upper

bound of s as 2 loge(2) [day−1] ≈ 1.39 [day−1]. Preliminary exploration cofnirms this estimate

is very conservative so we set the upper bound to unity.
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6A.2.3 Pooled sample variances

To identify parameters we assume distinct pooled sample variances for the outer, necrotic, and

inhibited radius measurements, as opposed to a single pooled variance for all measurements.

In Figure 6A.2 we plot the pooled sample variances for different experimental designs which

justify the use of a variance for each measurement type.
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Figure 6A.2: Variances σ2
o , σ2

n, and σ2
i , for outer, necrotic and inhibited radii, respectively. Results

shown for WM793b spheroids, using Design 3 and Temporal Resolution C, formed with (a) 1250, (b)
2500, (c) 5000, (d) 10000 cells per spheroid, respectively.
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6A.3 Experimental data

6A.3.1 Outer radius experimental measurements and images

The IncuCyte S3 live cell imaging system is a useful tool that we use to obtain many outer

radius measurements. The other outer radius measurements are obtained from confocal mi-

croscopy.

We start with 24 spheroids in the IncuCyte S3 live cell imaging system for each cell line

and initial spheroid size and image every 6 hours for the duration of the experiment. However,

some measurements could not be obtained primarily due to blurring of the automated imaging,

spheroids not forming properly, or spheroids losing their structural integrity at very late time. In

Table 6A.1 we show the total number of measurements obtained at 24 hour intervals starting

from Day 0 which corresponds to the time that we determined as when spheroid formation

ends and growth begins (Supplementary Material 6A.3.1). In Figures 6A.3-6A.5 we present

representative experimental images obtained from IncuCyte S3 live cell imaging system for

different days and WM793b, WM983b, and WM164 cell lines, respectively.

WM793 WM983b WM164
Day 1250 2500 5000 10000 2500 5000 10000 1250 2500 5000 10000

0 20 24 24 23 24 22 23 23 22 23 21
1 20 23 24 23 24 22 23 24 22 24 21
2 20 23 24 23 24 22 23 18 22 24 20
3 21 23 24 23 24 22 23 19 23 24 20
4 21 24 24 23 24 22 23 18 23 24 20
5 21 23 24 23 24 22 22 19 20 19 -
6 21 24 24 23 24 22 21 19 19 19 -
7 21 24 24 23 23 22 20 - - - -
8 21 24 24 23 23 22 20 - - - -
9 21 24 24 23 23 22 20 - - - -

10 21 24 24 23 23 22 20 - - - -
11 21 24 24 23 23 22 20 - - - -
12 21 24 24 23 22 22 20 - - - -
13 21 24 24 23 22 22 20 - - - -
14 21 24 24 23 - - - - - - -
15 20 24 22 23 22 22 20 - - - -
16 18 24 22 23 22 22 20 - - - -
17 18 24 22 23 22 22 20 - - - -
18 19 24 22 23 22 22 20 - - - -
19 19 24 22 23 22 22 20 - - - -
20 13 24 13 11 - - - - - - -

Table 6A.1: Number of outer radius measurements obtained from the IncuCyte S3 live cell imaging
system for the cell lines WM793b, WM983b, and WM164. Day 0 corresponds to the time that we
determined as when spheroid formation ends and growth begins, see supplementary material 6A.3.1.
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Figure 6A.3: Snapshots of WM793b tumour spheroids from IncuCyte S3 live cell imaging system at 0,
2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 days after formation for tumour spheroids formed with 1250, 2500,
5000, and 10000 cells per spheroid. Each image shows a 4.34 × 3.25 mm field of view.
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Figure 6A.4: Snapshots of WM983b tumour spheroids from IncuCyte S3 live cell imaging system at 0,
2, 4, 6, 8, 10, 12, 16, 18, and 19 days after formation for tumour spheroids formed with 2500, 5000, and
10000 cells per spheroid. Each image shows a 4.34 × 3.25 mm field of view.
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Figure 6A.5: Snapshots of WM164 tumour spheroids from IncuCyte S3 live cell imaging system at 0,
1, 2, 3, 4, 5, and 6 days after formation for tumour spheroids formed with 1250, 2500, 5000, and 10000
cells per spheroid. Each image shows a 4.34 × 3.25 mm field of view.
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Spheroid formation duration

In Figure 6A.6 we show time snapshots of forming tumour spheroids obtained in the IncuCyte

S3 live cell imaging system. These snapshots, alongside monitoring the evolution of the outer

radius obtained from image processing, validate the assumption that the tumour spheroids

have formed 4 days after seeding for WM793b. This method was also used to determine the

duration of spheroid formation for the WM983b (Figure 6A.7) and WM164 (Figure 6A.8) cell

lines.
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Figure 6A.6: Spheroids are formed 4 days after seeding for WM793b. Snapshots from IncuCyte S3 live
cell imaging system at -4, -3, -2, -1, 0, and 1 days after formation for tumour spheroids formed 1250,
2500, 5000, and 10000 cells per spheroid. Each image shows a 4.34 × 3.25 mm field of view.
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Figure 6A.7: Spheroids are formed at 2 days after seeding for WM983b. Snapshots from IncuCyte S3
live cell imaging system at -2, -1, 0, 1, and 2 days after formation for tumour spheroids formed with
2500, 5000, and 10000 cells per spheroid. Each image shows a 4.34 × 3.25 mm field of view.
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Figure 6A.8: Spheroids are formed at 3 days after seeding for WM164. Snapshots from IncuCyte S3
live cell imaging system at -3, -2, -1, 0 and 1 days after formation for tumour spheroids formed with
1250, 2500, 5000, and 10000 cells per spheroid. Each image shows a 4.34 × 3.25 mm field of view.
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6A.3.2 Confocal microscopy

Measurements

In Table 6A.2 we show the number of confocal measurements obtained. Spheroids damaged

during harvesting and fixing procedures are not included.

WM793 WM983b WM164
Day 1250 2500 5000 10000 2500 5000 10000 1250 2500 5000 10000

0 5 5 12 7 - - - - - - -
1 4 10 11 12 6 9 6 6 4 14 6
2 - - - - 12 9 10 13 10 10 9
3 5 22 23 18 12 10 9 - - - -
4 - - - - - - - 13 8 - -
5 - - - - 20 15 18 - - - -
6 7 28 25 25 - - - - - - -
7 - - - - - - - - - - -
8 12 27 20 23 16 13 15 - - - -
9 - - - - - - - - - - -

10 8 19 21 15 16 17 21 - - - -
11 - - - - - - - - - - -
12 12 18 19 17 13 14 13 - - - -
13 - - - - - - - - - - -
14 15 19 22 21 17 21 19 - - - -
15 - - - - - - - - - - -
16 - - - - 11 20 19 - - - -
17 11 15 14 5 - - - - - - -
18 - - - - - - - - - - -
19 - - - - 25 31 16 - - - -
20 22 23 21 20 - - - - - - -

Table 6A.2: Number of spheroids imaged using confocal microscopy for the cell lines WM793b,
WM983b, and WM164. For each imaged spheroid we obtain a measurement of the outer radius, inhib-
ited radius, and necrotic radius. Day 0 corresponds to the time for the each cell line that we determined
as when spheroid formation ends and growth begins. Measurements were taken on days days 3, 4,
5, 7, 10, 12, 14, 16, 18, 21 and 24 after seeding, and appear on different days in the table due to the
different formation times.
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6A.3.3 Confocal microscopy supplementary experimental images

Here we present confocal microscopy images of spheroids formed with the WM793b, WM983b,

and WM164 cell lines. In the images we outline each spheroids outer boundary, inhibited

region, and necrotic region.
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Figure 6A.9: Experimental images of WM793b tumour spheroids formed with 1250 cells per spheroid.
Each image shows a 800×800 µm field of view.
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Figure 6A.10: Experimental images of WM793b tumour spheroids formed with 2500 cells per spheroid.
Each image shows a 800×800 µm field of view.
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Figure 6A.11: Experimental images of WM793b tumour spheroids formed with 5000 cells per spheroid.
Each image shows a 800×800 µm field of view.
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Figure 6A.12: Experimental images of WM793b tumour spheroids formed with 10000 cells per
spheroid. Each image shows a 800×800 µm field of view.
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Figure 6A.13: Experimental images of WM983b tumour spheroids formed with 2500 cells per spheroid.
Each image shows a 800×800 µm field of view.
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WM983b - 5000

1

2

3

5

8

10

12

14

16

19

Day

Figure 6A.14: Experimental images of WM983b tumour spheroids formed with 5000 cells per spheroid.
Each image shows a 800×800 µm field of view.
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Figure 6A.15: Experimental images of WM983b tumour spheroids formed with 10000 cells per
spheroid. Each image shows a 800×800 µm field of view.
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WM164
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Figure 6A.16: Experimental images of WM164 tumour spheroids formed with 1250, 2500, 5000, and
10000 cells per spheroid. Each image shows a 800×800 µm field of view.
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3D rendering

Here we present a 3D rendering of a confocal microscopy image z-stack of half of a FUCCI-

melanoma WM793b spheroid 17 days after formation with 5000 cells.

Figure 6A.17: 3D rendering of half of a FUCCI-melanoma WM793b spheroid 17 days after formation
with 5000 cells. Scale bar 200µm.
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6A.4 WM793b additional results

6A.4.1 Results in tables

In all figures with profile likelihoods we include a red-dashed horizontal line at 0.15 indicat-

ing the 95% confidence interval threshold value [180]. Here, in Table 6A.3 we present the

corresponding MLE’s and approximate 95% confidence intervals for a range of experimental

designs.
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6A.4.2 Measurement times and experimental duration

Figure 6.1 shows that varying the temporal resolution in Design 1 is not sufficient to predict

necrotic and inhibited radii. Here, in Figures 6A.18 and 6A.19, we show that varying the tem-

poral resolution using Designs 2 and 3, respectively, gives consistent results across temporal

resolutions A, B, and C.

Next we consider four additional experimental designs that use different temporal measure-

ments

• Temporal Resolution D: the first 4 days (Day 1, 2, 3),

• Temporal Resolution E: the first 10 days (Day 1, 2, 3, 4, 5, 6, 7, 8, 9, 10),

• Temporal Resolution F: the last 10 days (Day 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),

• Temporal Resolution G: the last 4 days (Day 16, 17, 18, 19),

In Figures 6A.20 and 6A.21, we present results for the WM793b cell line for spheroids formed

with 1250 and 5000 cells, respectively. These results show that using Temporal Resolution D

is not sufficient to predict late time behaviour (Figure 6A.20e, Figure 6A.21e) and Temporal

Resolution E can also not be sufficient to predict late time behaviour (Figure 6A.20f). Similarly,

using late time experimental measurements, as in Temporal Resolutions F and G, is insufficient

to determine tumour spheroid structure at early times (Figure 6A.21g-h).
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Figure 6A.18: Increasing times when outer and necrotic radius is measured gives consistent informa-
tion. (a)-(c) Experimental data used in Design 2 with Temporal Resolutions A, B, and C. Profile likeli-
hoods for (e) s, (f) Rc, (g) γ, (h) Q. Yellow, blue, and orange lines in (e)-(h) represent profile likelihoods
from Design 2 with Temporal Resolutions A, B, and C, respectively. (i)-(k) Comparison of Greenspan
model simulated with maximum likelihood estimate compared to full experimental data set for Design 2
with Temporal Resolutions A, B, and C, where error bars show standard deviation.
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Figure 6A.19: Increasing times when outer, necrotic and inhibited radius and necrotic is measured
gives consistent information. (a)-(c) Experimental data used in Design 3 with Temporal Resolutions A,
B, and C. Profile likelihoods for (e) s, (f)Rc, (g) γ, (h)Q. Yellow, blue, and orange lines in (e)-(h) represent
profile likelihoods from Design 3 with Temporal Resolutions A, B, and C, respectively. (i)-(k) Comparison
of Greenspan model simulated with maximum likelihood estimate compared to full experimental data
set for Design 3 with Temporal Resolutions A, B, and C, where error bars show standard deviation.
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Figure 6A.20: Design 3 with temporal Resolutions D, E, F, and G for WM793b tumour spheroids formed
with 1250 cells per spheroid. (a)-(d) Experimental data used in Design 3 Temporal Resolutions D, E,
F, and G, respectively. (e)-(h) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set for Design 3 Temporal Resolutions D, E, F, and G,
respectively, where error bars show standard deviation. Profile likelihoods for (i) Ro(0), (j) s, (k) Rc, (l)
γ, (m) Q. Yellow, orange, blue, and purple lines in (e)-(h) represent profile likelihoods from Designs 3
Temporal Resolutions D, E, F, and G, respectively.
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Figure 6A.21: Design 3 with temporal Resolutions D, E, F, and G for WM793b tumour spheroids formed
with 5000 cells per spheroid. (a)-(d) Experimental data used in Design 3 Temporal Resolutions D, E,
F, and G, respectively. (e)-(h) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set for Design 3 Temporal Resolutions D, E, F, and G,
respectively, where error bars show standard deviation. Profile likelihoods for (i) s, (j) Ro(0), (k) Rc, (l)
γ, (m) Q. Yellow, orange, blue, and purple lines in (e)-(h) represent profile likelihoods from Designs 3
Temporal Resolutions D, E, F, and G, respectively.
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6A.4.3 Profile likelihoods for Ro(0)

To perform statistical identifiability analysis we we treat the initial outer radius, Ro(0), as a

parameter. Here, in Figure 6A.22 we show that profile likelihoods for Ro(0) are consistent

across temporal resolutions and experimental designs.
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Figure 6A.22: Profile likelihoods for Ro(0)
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6A.4.4 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii

In Figure 6.2 we compare Design 1 with Temporal Resolutions A, B, and C for the WM793b

cell line formed with 5000 cells. Here, in Figures 6A.23, 6A.24, and 6A.25, we compare Design

1 with Temporal Resolutions A, B, and C for the WM793b spheroids formed with 1250, 2500,

and 10000 cells, respectively. These results show that Design 1 is not a reliable design and

that outer radius measurements are not sufficient to predict inhibited and necrotic radii.
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Figure 6A.23: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
1250 cells per spheroid.
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Figure 6A.24: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
2500 cells per spheroid.
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Figure 6A.25: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
10000 cells per spheroid.
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6A.4.5 Cell cycle data are informative

In Figure 6.3 we compare Designs 1, 2, and 3 for the WM793b cell line formed with 5000 cells.

Here, in Figures 6A.26, 6A.27, and 6A.28, we compare Designs 1, 2, and 3 for the WM793b

spheroids formed with 1250, 2500, and 10000 cells, respectively. These results also show that

Design 3 provides most insight.
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Figure 6A.26: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in
(g)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
1250 cells per spheroid.
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Figure 6A.27: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in
(g)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
2500 cells per spheroid.
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Figure 6A.28: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in
(g)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM793b spheroids formed with
10000 cells per spheroid.
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6A.5 Synthetic data: WM793b

To confirm that profile likelihood analysis works as expected, we generate synthetic data from

Greenspan’s mathematical model using known parameters. We then explore when these

known parameters are recovered using the varying experimental designs considered in the

main manuscript: Design 1 with varying temporal resolutions (Supplementary Material 6A.5.1);

comparing Design 1, Design 2 and Design 3 (Supplementary Material 6A.5.2), and exploring

the role of initial spheroid size and also here experimental duration (Supplementary Material

6A.5.3). Since Greenspan’s model may be misspecified, and may not capture all of the bi-

ological details of tumour spheroid growth, the fact that these results for synthetic data are

consistent with those from experimental data enhances our confidence that key biological fea-

tures are captured in Greenspan’s model. Furthermore, when generating synthetic data there

is additional flexibility so we also explore what may happen if we were to spend significantly

more time collecting measurements (Supplementary Material 6A.5.4).

To generate synthetic data, we use the MLE from Design 3 Resolution C applied to experi-

mental data obtained from WM793b spheroids each formed with 5000 cells: (Rc, s, γ,Q,Ro(0)) =

(254.366, 0.1532, 0.045, 0.797, 179.550). First, we simulate Greenspan’s deterministic mathe-

matical model with these known parameters. Next, to obtain one noisy synthetic outer radius

measurement we record the outer radius from Greenspan’s model generated from the known

parameters at one time point. Next, we sample a normal distribution with zero mean and vari-

ance given by experimentally obtained outer radius pooled sample variance s2
o = 9.35. We add

this sampled noise to the recorded outer radius measurement. We repeat this process to ob-

tain additional outer radius measurements. Similarly, we repeat this process to obtain necrotic

and inhibited radius measurements, using experimentally obtained pooled sample variances

s2
n = 15.89, and s2

i = 33.12, respectively. We generate 10 measurements, or 48 when explor-

ing the role of additional measurements in supplementary material 6A.5.4, of the outer radius,

inhibited radius and necrotic radius every half day from day 0 to day 20.

6A.5.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii

Similarly to Figure 6.2, we observe in Figure 6A.29 that outer radius measurements are not

sufficient to predict inhibited and necrotic radii. Simulating Greenspan’s model with the MLE

from Design 1 Time Resolution A (Figure 6A.29d) and with Design 1 Time Resolution B (Fig-

ure 6A.29e) shows the time evolution of the outer radius is captured but the time evolution
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of the inhibited and necrotic region are not. However, simulating Greenspan’s model with the

MLE from Design 1 Time Resolution C (Figure 6A.29f) appears to capture the time evolution

of the outer, inhibited, and necrotic radii. However, inspecting the profile likelihoods in Figures

6A.29g-j shows that, while the known parameters are captured, the profiles are wide suggest-

ing that parameters are non-identifiable. This means that many parameter values give a similar

match to the outer radius experimental data and these parameters do not necessarily agree

with the inhibited and necrotic radii measurements.
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Figure 6A.29: Synthetic data shows that outer radius measurements are not sufficient to predict inhib-
ited and necrotic radii. (a)-(c) Synthetic data used in Designs 1 with Temporal Resolutions A, B, and C.
(d)-(f) Comparison of Greenspan model simulated with maximum likelihood estimate compared to full
synthetic data set. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, blue, and orange lines in (g)-(j)
represent profile likelihoods from Design 1 with Temporal Resolutions A, B, and C, respectively. Black
dashed lines in (g)-(j) show known parameters used to generate the synthetic data.
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6A.5.2 Cell cycle data are informative

Similarly to Figure 6.3, Design 3 provides most insight and best captures the known parameter

values used to generate the synthetic data (Figure 6A.30).
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Figure 6A.30: Synthetic data shows that measuring the necrotic and inhibited radius provides valuable
information. (a)-(c) Synthetic data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model
simulated with maximum likelihood estimate compared to full synthetic data set for Designs 1, 2 and
3. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in (g)-(j) represent profile
likelihoods from Designs 1 low temporal resolution, 2, and 3, respectively. Black dashed lines in (e)-(h)
show known parameters used to generate the synthetic data.
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6A.5.3 Role of initial spheroid size and experiment duration

In Greenspan’s model a change in the initial radius, Ro(0), corresponds to a shift in time (Figure

6A.31a). We now consider the role of initial spheroid size and experiment duration. As before,

we use the MLE from spheroids formed with 5000 cells per spheroid to generate synthetic

data. To generate synthetic data for spheroids formed with 1250, 2500, and 10000 cells per

spheroid we use the MLE obtained from spheroids formed with 5000 cells per spheroid and

only update Ro(0). To update Ro(0) we use the MLE from Design 3 applied to experimental

data obtained from WM793b spheroids formed with 1250, 2500, and 10000 cells per spheroid,

respectively.

We assume that each experiment is performed to Day 6 after formation, and use Design 3

with 10 measurements obtained on Day 1, 2, 3, 4, 5, and 6 (Figure 6A.31b-e). Note that during

this experimental duration only spheroids formed with 10000 cells per spheroid form a necrotic

core with the known parameters, while only spheroids formed with 5000 and 10000 cells per

spheroid form an inhibited region with the known parameters. Therefore, we expect that most

insight will be gained from the experiment formed with spheroids formed with 10000 cells per

spheroid.

Simulating Greenspan’s model with the MLE obtained from each of those data sets (dashed

lines in Figures 6A.31f-i) we observe good agreement to the first six days of synthetic data for

each initial spheroid size. However, simulating Greenspan’s model with the MLE obtained from

each of those data sets (dashed lines in Figures 6A.31f-i) and comparing to Greenspan’s model

simulated over 20 days with the known parameters used to generate the synthetic data (solid

lines in Figures 6A.31f-i)) this is not the case. We only observe excellent agreement for the

experiment with spheroids formed with 10000 cells, since this experiment has measurements in

phase (iii). Profile likelihoods for the parameters also show that only the experiment performed

with spheroids formed with 10000 cells accurately captures the known parameters (Figure

6A.31j-n).
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Figure 6A.31: Synthetic data exploring role of initial spheroid size and experimental duration. (a) In
Greenspan’s model a change in Ro(0) corresponds to a shift in time. (b)-(e) Synthetic generated for the
first six days after formation for spheroids formed with (b) 1250, (c) 2500, (d) 5000, (e) 10000 cells per
spheroid. (f)-(i) Comparison of Greenspan model simulated with maximum likelihood estimate (dashed
lines) compared to synthetic data for first 6 days compared to Greenspan model simulated with known
parameters used to generate the synthetic data (solid lines). Profile likelihoods for (j) Ro(0), (k) s, (l) Rc,
(m) γ, (n) Q. Yellow, orange, blue, and purple lines in (j)-(n) represent profile likelihoods from spheroids
formed with 1250, 2500, 5000, and 10000 cells per spheroid, respectively. Black dashed lines in (j)-(n)
show known parameters used to generate the synthetic data.
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6A.5.4 Increasing number of measurements

In biological experiments it is time consuming and expensive to increase the number of mea-

surements obtained. However, by generating synthetic data we can easily simulate additional

measurements. We generate 48 measurements of the outer radius, inhibited radius, and

necrotic radius every half day from Day 0 to Day 20. We choose 48 measurements since

this corresponds to half of a 96-well plate and is extremely large in comparison to typical ex-

periments. These results show that many measurements of Design 2 may provide good insight

in this extreme scenario but that Design 3 still provides most insight.
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Figure 6A.32: Synthetic data shows that more measurements of the necrotic and inhibited radius
provides valuable information. (a)-(c) Synthetic data used in Designs 1, 2 and 3. (d)-(f) Comparison of
Greenspan model simulated with maximum likelihood estimate compared to full synthetic data set for
Designs 1, 2 and 3. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in (e)-(h)
represent profile likelihoods from Designs 1, 2, and 3, with low temporal resolution, respectively. Black
dashed lines in (g)-(j) show known parameters used to generate the synthetic data.
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6A.6 Parameter identifiability analysis for WM983b

The main manuscript focuses on results for the human melanoma WM793b cell line. Here, we

present the corresponding results for the human melanoma WM983b spheroids formed with

2500, 5000, and 10000 cells.

All key observations made in reference to the WM793b cell line hold for the WM983b cell

line. Specifically, in Figures 6A.33, 6A.34 and 6A.35, for spheroids formed with 2500, 5000,

and 10000 cells, respectively, we show that varying the temporal resolution using only Design

1 is insufficient to determine necrotic and inhibited radii. In Figures 6A.36, 6A.37, and 6A.38

for spheroids formed with 2500, 5000, and 10000 cells, respectively, we show that Design 3

provides most insight. In Figure 6A.39 we show that information gained across experiments

with different initial spheroid sizes is consistent. Minor modifications were applied to the ex-

perimental designs as the WM983b tumour spheroids form after 3 days, which is 1 day earlier

than the WM793b tumour spheroids, and the experiment was terminated after 19 days so the

updated temporal resolutions are for this cell line are chosen as: Resolution A using Days 1,

3, 8, 12, 16; Resolution B using Days 1, 3, 5, 8, 10, 12, 14, 16, 18; Resolution C using Days 0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18; where Day 0 corresponds to the time

that we determined as when spheroid formation ends and growth begins.
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6A.6.1 Outer radius measurements are not sufficient to predict inhibited and

necrotic radii
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Figure 6A.33: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
2500 cells per spheroid.
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Figure 6A.34: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
5000 cells per spheroid.



CHAPTER 6A. SUPPLEMENTARY MATERIAL 308

Time [days]

R
ad

iu
s 

[μ
m

]

0 5 10 15 20
0

100

200

300

400

Time [days]
0 5 10 15 20

Time [days]
0 5 10 15 20

(d) (e) (f) Design 1 Resolution CDesign 1 Resolution A
Maximum likelihood estimate

(a) (b) (c) Design 1 Resolution CDesign 1 Resolution BDesign 1 Resolution A

Time [days]

R
ad

iu
s 

[μ
m

]

0 5 10 15 20
0

100

200

300

400

Time [days]
0 5 10 15 20

Time [days]
0 5 10 15 20

Rc [μm]s [day-1]

γ Q

(h)(g)

(i) (j)

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0

100 200 300

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Profile likelihoods

Design 1 Resolution B

Experimental data used

L p 
( R

c ;
 y

⁰ )

L p 
( s

 ; 
y⁰

 )
L p 

( γ
 ; 

y⁰
 )

L p 
( Q

 ; 
y⁰

 )

Resolution A Resolution B Resolution C

Figure 6A.35: Increasing the temporal resolution when the outer radius is measured does not provide
accurate information on internal structure. (a)-(c) Experimental data used in Design 1 with temporal
resolutions A, B, and C. (d)-(f) Comparison of Greenspan model simulated with maximum likelihood
estimate compared to full experimental data set, where error bars show standard deviation. Profile
likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, blue, orange lines in (g)-(j) represent profile likelihoods
from Design 1 with temporal resolutions A, B, and C, respectively, and the red-dashed line shows the
approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
10000 cells per spheroid.
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6A.6.2 Cell cycle data are informative
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Figure 6A.36: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in
(g)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
2500 cells per spheroid.
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Figure 6A.37: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in
(g)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
5000 cells per spheroid.
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Figure 6A.38: Measuring the necrotic and inhibited radius provides valuable information. (a)-(c) Ex-
perimental data used in Designs 1, 2 and 3. (d)-(f) Comparison of Greenspan model simulated with
maximum likelihood estimate compared to full experimental data set for Designs 1, 2 and 3, where error
bars show standard deviation. Profile likelihoods for (g) s, (h) Rc, (i) γ, (j) Q. Yellow, orange, blue lines in
(g)-(j) represent profile likelihoods from Designs 1, 2, and 3, respectively, and the red-dashed line shows
the approximate 95% confidence interval threshold. Results shown for WM983b spheroids formed with
10000 cells per spheroid.
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6A.6.3 Information gained across spheroid sizes is consistent
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Figure 6A.39: Information gained from experiments across different initial tumour spheroid sizes is
mostly consistent. Profile likelihoods for (a) Ro, (b) s, (c) Rc, (d) γ, (e) Q. Yellow, orange, and blue lines
in (a)-(e) represent profile likelihoods from tumour spheroids initially with approximately 2500, 5000, and
10000 cells per spheroid, respectively, and the red-dashed line shows the approximate 95% confidence
interval threshold. (f) Comparison of Greenspan model simulated with maximum likelihood estimates
compared to full experimental data sets across initial tumour spheroid size, where error bars show
standard deviation. Results shown for WM983b cell line.
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6A.7 Parameter identifiability analysis for WM164

The main manuscript focuses on results for the human melanoma WM793b cell line. Here,

we present analogous results for the human melanoma WM164 spheroids formed with 1250,

2500, 5000, and 10000 cells per spheroid. These spheroids are more challenging to interpret

as we will now explain.

In experiments WM164 spheroids formed after 3 days. These spheroids were larger in

size than other spheroids considered in this work, with the initial radius of WM164 spheroids

formed with 1250 cells per spheroid larger than and similar size to WM983b and WM793b

spheroids formed with 10000 cells per spheroid, respectively. The WM164 spheroids had rel-

atively poor spherical symmetry [219], grew rapidly and many spheroids lost their structural

integrity nine days after seeding formed with 1250, 2500, and 5000 cells per spheroid, and

seven days after seeding for spheroids formed with 10000 cells spheroid. In addition, confocal

microscopy could not be performed on day 7 after seeding for spheroids formed with 5000

and 10000 cells per spheroid due loss of structural integrity during harvesting. Identification of

the necrotic region using image processing was more challenging, than for other cell lines, as

a well-defined necrotic region did not form prior to the termination of the experiment. There-

fore, necrotic region measurements for these spheroids are more subjective and uncertain.

Spheroid boundaries were less smooth, so settings on the IncuCyte S3 live cell imaging sys-

tem were updated to measure the largest brightfield object area with max eccentricity to 0.75

and sensitivity 20. These outer radius measurements were then manually reviewed to confirm

accuracy.

We perform analysis for WM164 spheroids using Days 1, 2, 3, 4 and 5 after formation,

where measurements could be obtained. This means that we do not include the last day of

outer radius measurements for spheroids formed with 1250, 2500, and 5000 cells per spheroid.

This allows us to compare the final outer radius measurement to Greenspan’s model simulated

with the MLE as a predictive test. However, for spheroids formed with 10000 cells per spheroid

we include all data points so cannot form a predictive test, but this is because we seek to

obtain as much information as possible in the shorter experimental duration. While the ex-

perimental duration for WM164 spheroids is relatively short in comparison to the WM793b

and WM983b experiments, these experiments are still performed for multiple days longer than

previous WM164 spheroid experiments [87].

To perform the analysis we update initial parameter bounds, used for practical parameter

identifiability analysis, for as 200 < Ro(0) < 600 [µm] and 200 < Rc < 700 [µm]. We up-

date FirstGuess to (Q, γ, s,Rc, Ro(0)) = (0.8, 0.1, 0.5, 400, 210) for spheroids formed with 1250
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and 2500 cells per spheroid, and to (Q, γ, s,Rc, Ro(0)) = (0.8, 0.1, 0.4, 400, 350) for spheroids

formed with 5000 and 10000 cells per spheroid. Due to the reduced experimental duration

for WM164 spheroids, and as we have already demonstrated with two other cell lines and

synthetic data that Design 3 provides most insight, here we compare results obtained from

spheroids with different initial sizes using Design 3.

In Figure 6A.40a, we observe four distinct narrow peaks for Ro(0) corresponding to the

four initial spheroid sizes, which is expected. For s, we observe that profile likelihoods overlap

showing information obtained for s is relatively consistent for different initial spheroid sizes

(Figure 6A.40b). Interestingly and importantly, we observe four distinct peaks for Rc (Figure

6A.40c). This lack of consistency is different to the other two cell lines considered and strongly

suggests information gained across initial spheroid sizes is not consistent. This is supported

by direct observation of the experimental data where spheroids formed with 2500 cells have

necrotic cores on day 4, whereas similar sized spheroids on day 2 formed with 5000 and 10000

cells per spheroid do not. Profile likelihoods for γ are wide for spheroids formed with 5000 and

10000 cells per spheroid, and narrow and overlapping for spheroids formed with 1250 and 2500

cell per spheroid, showing that γ requires more necrotic core measurements to be identified

(Figure 6A.40d). Profile likelihoods for Q suggest that Q decreases as the initial spheroid size

increases (Figure 6A.40e). This result for Q is less consistent and in constrast to results from

other cell lines, where the profiles for Q overlapped for all spheroid sizes. Overall, we conclude

that, possibly due to their lack of spherical symmetry, WM164 spheroids are more challenging

to interpret and information gained using spheroids of different sizes is not consistent.

To support these results, we show along the diagonal of Figure 6A.40f the solution of the

mathematical model evaulated at the MLE associated with each initial spheroid size compared

to the experimental measurements. In doing so we demonstrate that we accurately predict

the last outer radius measurement using previous days measurements for spheroids formed

with 1250, 2500, and 5000 cells per spheroid. However, on the off-diagonals of Figure 6.4f,

we compare how the Greenspan model simulated with the MLE from one initial spheroid size

predicts data from different initial spheroid sizes by only changing the initial radius. These off-

diagonal results show that using information from one spheroid size to predict the behaviour

of a different spheroid size is not always accurate. For example, using information gained

from spheroids formed with 10000 cell per spheroid poorly predicts the behaviour of spheroids

formed with 1250 cell per spheroid, as the time evolution of the outer radius is not accurately

predicted at late time and the inhibited and necrotic regions form much earlier than predicted

(top right of Figure 6A.40f).
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Figure 6A.40: Information gained from WM164 experiments across different initial tumour spheroid
sizes is inconsistent. Profile likelihoods for (a) Ro(0), (b) s, (c) Rc, (d) γ, (e) Q. Yellow, orange, blue,
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7.1 Summary of the research

In this thesis we address two key aims. The first key aim is to develop a mathematical modelling

framework to study epithelial tissue dynamics incorporating key biological processes, such as

cell movement due to mechanical interactions, mechanical relaxation, cell proliferation, cell

death, mechanical cell competition, mechanochemical coupling, and cell detachment at tissue

boundaries due to epithelial-mesenchymal transitions. This framework is applicable to hetero-

geneous populations on free and fixed domains, and where the discrete model is prescribed

based on biological observations and the corresponding continuum-limit model derived. The

second key aim is to use mathematical models to quantitatively compare experimental designs

for tumour spheroid experiments to reveal those design choices that are important and lead to

reliable biological insight. This enables us to provide recommendations for future studies. To

achieve these aims we develop new mathematical models, perform tumour spheroid experi-

ments in the laboratory, and use statistical analysis. These two key aims correspond to Part 1

and Part 2 of this thesis and objectives 1-4, and 5, respectively, of this thesis:

Part 1: Mathematical model development

1. Develop a discrete mathematical model to describe cell movement due to mechanical

interactions in heterogeneous epithelial tissues and derive and compare to the corre-

sponding continuum-limit model,

2. Extend objective 1 to develop a discrete mathematical model that includes cell prolifer-

ation and cell death in order to describe mechanical cell competition in heterogeneous

epithelial tissues and derive and compare to the corresponding continuum model,

3. Extend objectives 2 and 3 to examine the travelling wave behaviour of the free bound-

ary continuum model, incorporating cell movement due to mechanical interactions, cell

proliferation, and cell death,

4. Extend objectives 2, 3, and 4 to develop a discrete mathematical model to describe

the role of mechanical interactions in epithelial-mesenchymal transitions and derive and

compare to the corresponding continuum model,

Part 2: Experimental design and mathematical modelling

5. Perform tumour spheroid experiments in the laboratory and use statistical analysis with

the Greenspan model to identify experimental design choices that are important and lead

to reliable biological insight. Provide recommendations for future studies and demon-

strate how to quantitatively compare data collected across different experimental designs.



CHAPTER 7. CONCLUSION 319

These five objectives are successfully addressed in the five articles presented in Chapters 2-6

of this thesis, which we now summarise.

In Chapter 2, we develop a discrete to continuum modelling framework to study cell move-

ment due to mechanical interactions in heterogeneous epithelial tissues. We provide a novel

derivation that connects the discrete model to the continuum model by increasing the number

of springs per cell, while maintaining the number of cells in the tissue and its fixed total length,

and by considering spatial averages over length scales involving a large enough number of

cells to define continuous densities but small enough to retain spatial heterogeneities. Excel-

lent agreement is observed between solutions from the discrete model and the corresponding

continuum model for slowly-varying-in-space and rapidly-varying-in-space heterogeneity, as

the number of springs per cell increases. By dealing explicitly with heterogeneous cell pop-

ulations this model has many potential applications. We consider two applications. First, we

provide guidance how to infer cellular-level properties by tracking the interface between two

distinct adjacent populations. We suggest that it is easier to determine the relative cell stiff-

nesses than it is to determine the relative resting cell lengths. Second, we use our model to

interpret recent breast cancer detection experiments. Our results show that while a cell’s rest-

ing cell length is not an easily measured experimental quantity it could be an important variable

to consider.

In Chapter 3, we extend the model developed in Chapter 2 to incorporate cell proliferation

and cell death, allowing us to explore mechanical cell competition. After prescribing the dis-

crete model we derive the corresponding continuum model. In deriving the continuum model,

the discrete mechanisms and assumptions that underpin the continuum model are made ex-

plicit by presenting the details of the coarse-graining derivations. This enables us to to provide

insights into when the continuum model is and is not valid. Therefore, under certain conditions

we can recommend the discrete model is more appropriate. Further, we stress the limitations

of developing continuum models by simply adding source and sink terms to an existing model

without considering the underlying discrete model in complex biological systems. By coupling

mechanics with cell proliferation and cell death we explore biological scenarios that could not

be described with previous modelling frameworks. We focus on mechanical cell competition

in heterogeneous epithelial tissues. By choosing mechanical relaxation rates sufficiently fast

relative to proliferation rates we observe good agreement between the average of many iden-

tically prepared stochastic realisations of the discrete model and the corresponding solutions

of the continuum model, even when there are a low number of cells in the tissue. We explore

mechanical cell competition applied to cancer invasion by considering cancer cells adjacent
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to healthy cells which compete for space. Interestingly, when we only allow cancer cells and

healthy cells to differ in their cell stiffnesses, as a result of mechanical coupling, we observe

that the cancer cells have more opportunities to proliferate and are less likely to die than healthy

cells. We can then identify the cancer cells, as a result of the property of lower cell stiffness, as

being the winner cells which invade the full domain. Cell stiffness and cell size may therefore

be important factors to include when interpreting proliferation and death rates in experimental

data.

In Chapter 4, we extend the work presented in Chapters 2-3 to include a free boundary. By

focusing on the continuum model and using numerical simulations, phase plane and perturba-

tion analysis, we find travelling wave solutions with negative, zero, and positive wavespeeds.

Whether the cell population invades or retreats corresponds to whether cells at the carrying

capacity density are in compression or in extension, respectively. Furthermore, unlike classical

reaction-diffusion models, travelling wave solutions for this model have well-defined fronts and

do not correspond to a heteroclinic orbit in the phase plane. We also obtain exact expressions

for the speed of travelling wave solutions together with useful approximations of the shape of

the travelling wave solutions.

In Chapter 5, we extend Chapters 2, 3, and 4 to incorporate chemical diffusion, and to incor-

porate a new free boundary condition describing cells detaching due to chemically-dependent

epithelial-mesenchymal transitions (EMT). The coupling of mechanical interactions between

cells and chemically-dependent EMT gives rise to a mechanochemical model. We focus on

exploring the role of mechanical interactions in epithelial-mesenchymal transitions (EMT). We

add chemically-dependent cell detachment, to represent EMT, into the modelling framework.

This leads to a novel nonlinear free boundary problem where the boundary condition is derived

from cell-level biological processes. This is unlike many other models in mathematical biology

where the physical interpretation of the boundary conditions can be unclear. Both the discrete

and continuum models provide useful information: discrete models show the important role of

stochastic effects while continuum models help classify possible behaviours. Our results show

good agreement between the continuum model and appropriately averaged quantities from

many discrete realisations. Our models suggest that the coupling of mechanical interactions

with EMT is important, can change the probability of long-term extinction significantly, and give

rise to different rates of cell detachment. Using our model we postulate how one could en-

courage a wound to heal faster and how one may prevent cancer cells detaching from primary

cancer tumours and spreading to other locations to form secondary tumours.

In Chapter 6, we transition to Part 2 of this thesis and focus on tumour spheroid experiments
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where many mathematical models, with mechanochemical mechanisms, have been proposed

but very few have been experimentally tested. Tumour spheroid experiments are routinely per-

formed to study cancer progression and cancer treatments. However, experimental designs

are inconsistent, leading to challenges in interpretability and reproducibility. First, we collect

experimental data from tumour spheroid experiments across a range of experimental designs.

Next, we develop an objective theoretical framework, using the seminal Greenspan mathe-

matical model and statistical identifiability analysis, to quantitatively compare these data and

provide recommendations for future experimental studies. We find that most insight is gained

from measuring spheroids internal structure, and that frequency of measurement is less im-

portant. Furthermore, as information from tumour spheroids across varying initial spheroid

sizes appears consistent, provided sufficient measurements at later times (in phase (iii)) are

obtained, we recommend that performing experiments with larger tumour spheroids can be

beneficial to obtain useful information in a shorter experimental duration. This framework can

be applied to other tumour spheroid experiments grown in different conditions or with different

cell types. The insights of this study provide a platform for future studies that develop, test,

and examine cancer treatments with spheroids. In doing this work we also quantitatively test

the seminal Greenspan mathematical model, which has been highly influential in mathematical

biology, for the first time since its publication 50 years ago.

In preparation for Chapter 6, I was trained in a wet-laboratory to perform tumour spheroid

experiments from start to finish including: cell culturing; spheroid formation; spheroid harvest-

ing; spheroid fixing and mounting in preparation for imaging; confocal microscopy; and, image

acquisition, processing, and analysis. Having started this PhD with no laboratory experience,

the ability to perform biological experiments in combination with mathematical modelling and

statistical analysis has been enlightening. For example, simple and fundamental biological

questions were unknown, such as how does the internal structure of spheroid, and spatiotem-

poral heterogeneity with respect to the cell cycle change with time? how does the choice of

the initial number of cells used to construct spheroid experiments influence the outcome of the

experiment? and how do we compare and interpret tumour spheroid results when different

measurements are made at different time points? We address these questions by developing

an objective quantitative framework connecting experimental data, mathematical modelling,

and statistical analysis, in Chapter 6.

Overall, the work in this thesis has explored mechanochemical and experimental models

in mathematical biology. In the first part of this thesis we develop a discrete to continuum

mechanochemical modelling framework for epithelial tissue dynamics incorporating key bio-
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logical features. Using these models we interpret experimental data, provide guidance on

how to infer cellular-level properties, identify that cell stiffness and cell size may be impor-

tant factors when interpreting proliferation and death rates in experimental data, develop a

quantitative framework to test hypotheses on mechanical cell competition, and highlight the

role of mechanical interactions in epithelial-mesenchymal transitions. Without the modelling

framework developed here such interpretations, observations, and recommendations would

be difficult and not clear. Further this modelling framework is a platform for future studies on

epithelial tissue dynamics, as outlined in Section 7.2. In the second part of the thesis we de-

velop an objective theoretical framework, using the seminal Greenspan mathematical model

and statistical identifiability analysis, to quantitatively compare experimental data that I collect

in the laboratory across a range of experimental designs. In doing so we provide recommen-

dations for future studies, such as measurements of internal spheroid structure provide the

most insight, whereas varying initial spheroid size and temporal measurement frequency is

less important. As tumour spheroid experiments are routinely performed to study cancer pro-

gression and treatment, the insights of this work are widely applicable and lay a foundation for

future work incorporating drug treatments, spheroids grown with different conditions and with

different cell types, and heterogeneous populations, as outlined in Section 7.2.
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7.2 Future work

Both Part 1 and Part 2 of this thesis, studying epithelial tissue dynamics and tumour growth,

respectively, provide a platform for many future studies. We now discuss some potential exten-

sions.

7.2.1 Epithelial tissue dynamics

The theoretical foundations presented in this thesis for building a discrete model and con-

structing the continuum limit of that discrete model can be used to describe many additional

mechanisms in future analyses.

Cell cycle

While some features of the cell cycle and cell ageing are implicit in this work, it would be

of interest to explicitly incorporate the cell cycle and associated cell ageing processes such

as growth in the resting cell length [147]. Furthermore, experimental results with real-time

cell cycle imaging, using the same FUCCI technology described in Chapter 6, suggest that

cell cycle progression in epithelial tissues is regulated cooperatively by forces between the

dividing cell and its neighbours [234]. However, these observations appear not to have been

incorporated into models of heterogeneous epithelial tissue dynamics. In this thesis we provide

the foundations for such mechanisms to be included and explored.

Intestinal crypts, curved substrates, and tissue engineering

The work presented in this thesis focuses on one-dimensional epithelial tissues on flat sub-

strates. However, this work can be extended to non-flat geometries, for example curved sub-

strates and intestinal crypts [166, 167]. One expects that many results obtained in this thesis

for one-dimensional flat substrates apply to curved substrates. For example, the continuum

model is expected to hold as taking the limit as the number of springs per cell tends to infinity

would correspond to approximating the curved substrate as flat. In contrast, the role of cur-

vature of the substrate may be important in determining when the continuum model agrees

with the discrete model. Extending this work to substrates that evolve in time, for example in

bone [9,94] or tissue engineering [32,35], may also be interesting where the role of mechanics

can be overlooked.
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Higher dimensions

The one-dimensional approach taken in this work has many advantages in its predictive power,

interpretability, and relative computational simplicity in comparison to two- or three-dimensional

models. Furthermore, cell-length-dependent proliferation may be thought of as an approxima-

tion for cell-volume-dependent proliferation which occurs for cells that move in three-dimensional

environments. However, real cells can also spread without changing volume, so it may be

beneficial to explore the role of the cell cycle in this one-dimensional framework [234]. A sig-

nificant extension of this work would be to consider higher dimensions. The discrete model

could be extended by considering a cell-centre or vertex model which introduces questions

regarding cell shape and how neighbours can be identified, along with increased computa-

tional expense [67, 175, 179]. A corresponding continuum model in higher dimensions is less

clear. The one-dimensional model enforces an ordering of neighbouring cells, which is im-

portant when deriving a continuum model [68, 163]. However, in higher dimensions cells can

change their neighbours which poses significant challenges [68, 163]. The work completed in

this thesis will provide great insights for such studies.

Quantitatively connect to experimental data

Recent experimental studies have explored the role of mechanochemical processes in epithe-

lial tissues [28,98], mechanical waves in epithelial tissues [198], colliding epithelial tissues [95],

and cell competition [130]. However, the corresponding mathematical models tend to neglect

cell proliferation and cell death. In this thesis we have developed a mathematical framework

that provides the platform to study these in greater depth. Therefore it would be of great in-

terest to extend this work to such experimental studies. Further, it would be interesting to

experimentally test predictions made in this work. One approach to quantitatively connect this

model to experimental data could be to use statistical analysis, as described in Chapter 6 for

tumour spheroid experiments.
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7.2.2 Tumour growth

In the second part of this thesis we present an objective theoretical framework to quantitatively

compare experimental data from tumour spheroid experiments performed across a range of

experimental designs. This framework is suitable for many extensions.

Spheroids grown with different conditions

Our modelling framework is suitable to be extended to consider spheroids grown with different

cell types and in different conditions. Such experiments could provide valuable insights. For

example, Greenspan’s model [79], which we use to interpret the experimental data, assumes

that spatial gradients of diffusing nutrient and/or waste drive the governing behaviour. There-

fore, performing perturbation experiments, such as varying the external nutrient concentration,

would test key assumptions in the Greenspan model.

In addition, many studies in experimental biology focus on biological pathways from the

molecular scale upwards. Using our framework one could interpret tumour spheroid experi-

ments with and without gene knockdowns, use statistical identifiability analysis to determine

the parameters of the model, and identify if they vary significantly. If parameters are signifi-

cantly different one could suggest the gene that was knocked down plays an important role on

tumour growth and internal structure. This provides a top down interpretation of experimental

results as opposed to the traditional bottom up approach. This could be powerful in future

studies and would be difficult without using the quantitative framework we outline in this thesis.

Heterogeneous populations

Much of the first part of this thesis focuses on developing a model for heterogeneous epithelial

tissues. In the second part of this thesis we use a mathematical model for homogeneous

populations, since the experiments that we perform use tumour spheroids grown from cell lines

so treating the spheroid as a homogeneous population is realistic. However, in vivo tumours

are heterogeneous. Therefore, considering heterogeneous populations both experimentally,

using tumour spheroids generated from multiple cell lines or patient derived organoids, and

mathematically, possibly by extending Greenspans model, may more accurately mimic real

life scenarios and provide even greater insight. This work would directly build upon the work

presented in this thesis and would be difficult without using the quantitative framework we

outline in this thesis.
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7.3 Final remarks

In this thesis we explore mechanochemical and experimental models in mathematical biol-

ogy. We develop new mathematical models for epithelial tissue dynamics, and perform tumour

spheroid experiments in a wet-laboratory to then examine a range of experimental designs

using mathematical modelling and statistical analysis. As a result of the work in this thesis

we reveal that many measurements and processes, often neglected, may be important. We

demonstrate that power of the discrete-to-continuum modelling approach, and provide a plat-

form for many future studies exploring mechanochemical processes. Furthermore, by develop-

ing an objective theoretical framework, using the seminal Greenspan mathematical model and

statistical identifiability analysis, we demonstrate how to quantitatively compare experimental

data across experimental designs and address basic and fundamental biological questions.

We provide recommendations that will benefit and guide routinely performed tumour spheroid

experiments to accelerate the study of cancer progression and treatment. For future studies

in these research areas, we recommend continued cross-disciplinary collaboration using tools

from experimental biology, mathematical modelling, and statistical analysis.
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[128] M. Lekka, D. Gil, K. Pogoda, J. Duliǹska-Litewka, R. Jach, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki,
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